期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost 被引量:4
1
作者 Haibin Huang gangyu tian +6 位作者 Lang Zhou Jiren Yuan Wolfgang R.Fahrner Wenbin Zhang Xingbing Li Wenhao Chen Renzhong Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期520-525,共6页
A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material c... A novel structure of Ag gridlSiN_(x)/n+-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:HlTCO/Ag grid was designed to increase the ef-ficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost.The simulation results show that the new structure obtains higher efficiency compared with the typical bifa-cial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)),while retaining the advantages of a high open-circuit voltage,low temperature coefficient,and good weak-light performance.Moreover,real cells composed of the novel structure with dimensions of 75 mm×75 mm were fabricated by a special fabrication recipe based on industrial processes.Without parameter optimization,the cell efficiency reached 21.1%with the J_(sc)of 41.7 mA/cm^(2).In addition,the novel structure attained 28.55%potential conversion efficiency under an illumination of AM 1.5 G,100 mW/cm^(2).We conclude that the configuration of the Ag grid/SiN_(x)/n^(+)-c-Si/n-c-Si/i-a-Si:H/p^(+)-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost. 展开更多
关键词 silicon solar cell a-Si:H/c-Si heterojunction short-circuit current
下载PDF
Analysis of the double-layer a-Si:H emitter with different doping concentrations for α-Si:H/c-Si heterojunction solar cells 被引量:1
2
作者 Haibin HUANG gangyu tian +4 位作者 Tao WANG Chao GAO Jiren YUAN Zhihao YUE Lang ZHOU 《Frontiers in Energy》 SCIE CSCD 2017年第1期92-95,共4页
Double-layer emitters with different doping concentrations (DLE) have been designed and prepared for amorphous silicon/crystalline silicon (ct-Si:H/c-Si) hetero- junction solar cells. Compared with the traditiona... Double-layer emitters with different doping concentrations (DLE) have been designed and prepared for amorphous silicon/crystalline silicon (ct-Si:H/c-Si) hetero- junction solar cells. Compared with the traditional single layer emitter, both the experiment and the simulation (AFORS-HET, http://www.paper.edu.cn/html/releasepaper/2014/04/282/) prove that the double-layer emitter increases the short circuit current of the cells significantly. Based on the quantum efficiency (QE) results and the current-voltage-temperature analysis, the mechanism for the experimental results above has been investigated. The possible reasons for the increased current include the enhancement of the QE in the short wavelength range, the increase of the tunneling probability of the current transport and the decrease of the activation energy of the emitter layers. 展开更多
关键词 double-layer emitter α-Si:H/c-Si heterojunc-tion solar cell short circuit current quantum efficiency current-voltage-temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部