为研究黏土夹层对共振法处理可液化砂土地基效果的影响,按比例制备十字翼振杆并开展相关模型试验.根据加固前后轻型动力触探击数 N 10 、土颗粒峰值振动加速度 a 和砂土相对密度 D r 的变化,分析了黏土夹层对土体强度、能量传递规律及...为研究黏土夹层对共振法处理可液化砂土地基效果的影响,按比例制备十字翼振杆并开展相关模型试验.根据加固前后轻型动力触探击数 N 10 、土颗粒峰值振动加速度 a 和砂土相对密度 D r 的变化,分析了黏土夹层对土体强度、能量传递规律及密实程度的影响.结果表明, N 10 和 a 值随着测点与振杆径向距离的增加而减小.受黏土夹层影响,加固前后土体强度增长幅度降低64%~127%, a 值也相应减少,且振动有效影响半径由0.4 m减少为0.3 m,砂土相对密实度增长幅度下降4.2%~9.7%.现场标贯试验及地表峰值振速监测结果进一步验证了模型试验的可靠性.地基中黏土夹层可使振点处的排水通道受阻,降低土体排水固结及能量传递效率,减弱了加固效果.展开更多
This paper describes the improvement effect and mechanism of strengthening a liquefied sand foundation using the cross-vibration wing resonance method,through an indoor model test and numerical simulation.The results ...This paper describes the improvement effect and mechanism of strengthening a liquefied sand foundation using the cross-vibration wing resonance method,through an indoor model test and numerical simulation.The results obtained from the model test showed that a vertical drainage tube was formed during vibration compaction,and finally a crater with a depth of 40 mm and a radius of 150 mm was formed with sloping sides.The sand layer obtained a good improvement effect after resonance vibration,especially in the middle-lower sand deposit.The variation in excess pore water pressure showed different behavior in three stages of the vibration process,and the value after treatment was less than before with a decrease of 18.81%.The vibration energy in the horizontal direction gradually decreased to zero,however the absorption of vibration energy of the soil presented obvious nonuniformity along the depth direction.The results of the numerical simulation were similar to the model test results,including the scope and variation of pore water pressure,and the ground settlement after treatment.展开更多
文摘为研究黏土夹层对共振法处理可液化砂土地基效果的影响,按比例制备十字翼振杆并开展相关模型试验.根据加固前后轻型动力触探击数 N 10 、土颗粒峰值振动加速度 a 和砂土相对密度 D r 的变化,分析了黏土夹层对土体强度、能量传递规律及密实程度的影响.结果表明, N 10 和 a 值随着测点与振杆径向距离的增加而减小.受黏土夹层影响,加固前后土体强度增长幅度降低64%~127%, a 值也相应减少,且振动有效影响半径由0.4 m减少为0.3 m,砂土相对密实度增长幅度下降4.2%~9.7%.现场标贯试验及地表峰值振速监测结果进一步验证了模型试验的可靠性.地基中黏土夹层可使振点处的排水通道受阻,降低土体排水固结及能量传递效率,减弱了加固效果.
基金National Natural Science Foundation of People′s Republic of China under Grant No.41977241the Scientific Research Foundation of Graduate School of Southeast University under Grant No.YBPY1981。
文摘This paper describes the improvement effect and mechanism of strengthening a liquefied sand foundation using the cross-vibration wing resonance method,through an indoor model test and numerical simulation.The results obtained from the model test showed that a vertical drainage tube was formed during vibration compaction,and finally a crater with a depth of 40 mm and a radius of 150 mm was formed with sloping sides.The sand layer obtained a good improvement effect after resonance vibration,especially in the middle-lower sand deposit.The variation in excess pore water pressure showed different behavior in three stages of the vibration process,and the value after treatment was less than before with a decrease of 18.81%.The vibration energy in the horizontal direction gradually decreased to zero,however the absorption of vibration energy of the soil presented obvious nonuniformity along the depth direction.The results of the numerical simulation were similar to the model test results,including the scope and variation of pore water pressure,and the ground settlement after treatment.