期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Differences and Correlations of Morphological and Hemodynamic Parameters between Anterior Circulation Bifurcation and Side-wall Aneurysms
1
作者 Kai-kai GUO Chang-ya liU +4 位作者 gao-hui li Jian-ping XIANG Xiao-chang LENG Yi-ke CAI Xue-bin HU 《Current Medical Science》 SCIE CAS 2024年第2期391-398,共8页
Objective:The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries,utilizin... Objective:The objective of this research was to explore the difference and correlation of the morphological and hemodynamic features between sidewall and bifurcation aneurysms in anterior circulation arteries,utilizing computational fluid dynamics as a tool for analysis.Methods:In line with the designated inclusion criteria,this study covered 160 aneurysms identified in 131 patients who received treatment at Union Hospital of Tongji Medical College,Huazhong University of Science and Technology,China,from January 2021 to September 2022.Utilizing follow-up digital subtraction angiography(DSA)data,these cases were classified into two distinct groups:the sidewall aneurysm group and the bifurcation aneurysm group.Morphological and hemodynamic parameters in the immediate preoperative period were meticulously calculated and examined in both groups using a three-dimensional DSA reconstruction model.Results:No significant differences were found in the morphological or hemodynamic parameters of bifurcation aneurysms at varied locations within the anterior circulation.However,pronounced differences were identified between sidewall and bifurcation aneurysms in terms of morphological parameters such as the diameter of the parent vessel(Dvessel),inflow angle(θF),and size ratio(SR),as well as the hemodynamic parameter of inflow concentration index(ICI)(P<0.001).Notably,only the SR exhibited a significant correlation with multiple hemodynamic parameters(P<0.001),while the ICI was closely related to several morphological parameters(R>0.5,P<0.001).Conclusions:The significant differences in certain morphological and hemodynamic parameters between sidewall and bifurcation aneurysms emphasize the importance to contemplate variances in threshold values for these parameters when evaluating the risk of rupture in anterior circulation aneurysms.Whether it is a bifurcation or sidewall aneurysm,these disparities should be considered.The morphological parameter SR has the potential to be a valuable clinical tool for promptly distinguishing the distinct rupture risks associated with sidewall and bifurcation aneurysms. 展开更多
关键词 SIDEWALL BIFURCATION unruptured aneurysms computational fluid dynamics
下载PDF
Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints 被引量:4
2
作者 Hai-feng Zhang li Zhou +4 位作者 Wen-lin li gao-hui li Yi-tang Tang Ning Guo Ji-cai Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第4期699-709,共11页
We used refill friction stir spot welding(RFSSW)to join 2-mm-thick AZ91D-H24 magnesium alloy sheets,and we investigated in detail the effect of tool plunge depth on the microstructure and fracture behavior of the join... We used refill friction stir spot welding(RFSSW)to join 2-mm-thick AZ91D-H24 magnesium alloy sheets,and we investigated in detail the effect of tool plunge depth on the microstructure and fracture behavior of the joints.A sound joint surface can be obtained using plunge depths of 2.0 and 2.5 mm.Plunge depth was found to significantly affect the height of the hook,with greater plunge depths corresponding to more severe upward bending of the hook,which compromised the tensile-shear properties of the joints.The hardness reached a minimum at the thermo-mechanically affected zone due to the precipitation phases of this zone as it dissolved into theα-matrix during the welding process.The fracture modes of RFSSW joints can be divided into three types:shear fracture,plug fracture,and shear–plug fracture.Of these,the joint with a shear–plug fracture exhibited the best tensile-shear load of 6400 N. 展开更多
关键词 refill friction stir spot welding AZ91 magnesium alloy MICROSTRUCTURE fracture behavior
下载PDF
Material flow behavior and microstructural evolution during refill friction stir spot welding of alclad 2A12-T4 aluminum alloy
3
作者 gao-hui li li Zhou +2 位作者 ling-yun Luo Xi-ming Wu Ning Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第1期131-141,共11页
In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding.There are two ma... In this study, we used the stop-action technique to experimentally investigate the material flow and microstructural evolution of alclad 2A12-T4 aluminum alloy during refill friction stir spot welding.There are two material flow components, i.e., the inward-or outward-directed spiral flow on the horizontal plane and the upward-or downward-directed flow on the vertical plane.In the plunge stage, the flow of plasticized metal into the cavity is similar to that of a stack, whereby the upper layer is pushed upward by the lower layer.In the refill stage, this is process reversed.As such, there is no obvious vertical plasticized metal flow between adjacent layers.Welding leads to the coarsening of S(Al2CuMg) in the thermo-mechanically affected zone and the diminishing of S in the stir zone.Continuous dynamic recrystallization results in the formation of fine equiaxed grains in the stir zone, but this process becomes difficult in the thermo-mechanically affected zone due to the lower deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, which leads to a high fraction of low-angle grain boundaries in this zone. 展开更多
关键词 refill friction stir spot welding aluminum alloy material flow behavior precipitate evolution dislocation configuration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部