期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation and catalytic behavior of reduced graphene oxide supported cobalt oxide hybrid nanocatalysts for CO oxidation 被引量:4
1
作者 Yan WANG Ze-hua CHEN +6 位作者 Jing HUANG gao-jie li Jian-liang CAO Bo ZHANG Xing-ying CHEN Huo-li ZHANG Lei JIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2266-2274,共9页
The reduced graphene oxide (rGO) supported cobalt oxide nanocatalysts were prepared by the conventional precipitationand hydrothermal method. The as-prepared rGO-Co3O4 was characterized by the XRD, Raman spectrum, S... The reduced graphene oxide (rGO) supported cobalt oxide nanocatalysts were prepared by the conventional precipitationand hydrothermal method. The as-prepared rGO-Co3O4 was characterized by the XRD, Raman spectrum, SEM, TEM, N2-sorption,UV-Vis, XPS and H2-TPR measurements. The results show that the spinel cobalt oxide nanoparticles are highly fragmented on therGO support and possess uniform particle size, and the as-prepared catalysts possess high specific surface area and narrow pore sizedistribution. The catalytic properties of the as-prepared rGO-Co3O4 catalysts for CO oxidation were evaluated through acontinuous-flow fixed-bed microreactor-gas chromatograph system. The catalyst with 30% (mass fraction) reduced graphene oxideexhibits the highest activity for CO complete oxidation at 100 ℃. 展开更多
关键词 reduced graphene oxide cobalt oxide CATALYST CO oxidation catalytic activity
下载PDF
Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio 被引量:1
2
作者 gao-jie li Ming-xing Guo +3 位作者 Yu Wang Cai-hui Zheng Ji-shan Zhang lin-zhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第6期740-751,共12页
The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grai... The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grains increases with the addition of Ni,accompanied by the formation of Q(Al3Mg9Si7Cu2)precipitates around the spherical Fe-rich phases.Additionally,Ni addition is beneficial to reducing the grain size in the as-cast state.During the homogenization process,Q phases could be completely dissolved and the grain size could remain basically unchanged.However,compared with the Ni-free alloy,the Fe-rich phase in the Ni-containing alloy is more likely to undergo the phase transformation and further form more spherical particles during homogenization treatment.After thermomechanical processing,the distribution of Fe-rich phases in the Ni-containing alloy was further greatly improved and directly resulted in a greater formability than that of the Ni-free alloy.Accordingly,a reasonable Ni addition positively affected the microstructure and formability of the alloys. 展开更多
关键词 Al-Mg-Si-Cu-Zn alloy NI ADDITION Fe-rich PHASE PHASE transformation FORMABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部