期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Error Analysis on the Positioning Accuracy of a Pneumatic Vibration Isolator
1
作者 Qiang Yu Dengfeng Xu +2 位作者 Yu Zhu gaofeng guan Qiang L 《Journal of Beijing Institute of Technology》 EI CAS 2019年第2期209-217,共9页
A method of error analysis on the positioning accuracy of a pneumatic vibration isolator was proposed.First,the necessity of positioning accuracy was studied,in addition to the key factors associated with positioning ... A method of error analysis on the positioning accuracy of a pneumatic vibration isolator was proposed.First,the necessity of positioning accuracy was studied,in addition to the key factors associated with positioning accuracy.These analyses indicated that the positioning accuracy of the pneumatic vibration isolator was mainly attributed to the position error of the push button and the gap between the spindle and valve stem.Second,the error model of the positioning accuracy of the pneumatic vibration isolator was established through geometric simplification and geometric calculation.There are different methods used to calculate the position error of the push button for the different valves.Finally,an example analysis evaluating the impact of a specific two-position three-way valve on the positioning accuracy was given by means of error distribution.Experimental results validated the accuracy of the error model and the example analysis.This error model can be used to guide the structural parameter optimization design according to the requirements for positioning accuracy. 展开更多
关键词 PNEUMATIC vibration ISOLATOR POSITIONING accuracy ERROR model VALVE
下载PDF
Energy Cycle Insingle Degree of Freedom Conservative Vibration Isolation Systems
2
作者 gaofeng guan Dengfeng Xu +2 位作者 Yu Zhu Qiang Yu Qiang Li 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期644-650,共7页
To obtain a longer natural period in single degree of freedom(SDF) conservative vibration isolation systems, many scholars have proposed different methods. This paper uncovers a clockwise energy cycle existing in a ma... To obtain a longer natural period in single degree of freedom(SDF) conservative vibration isolation systems, many scholars have proposed different methods. This paper uncovers a clockwise energy cycle existing in a mass-spring system, in which the potential energy and kinetic energy convert with each other, and the natural period is determined by the magnitude of the energy cycle. Compared to water flow inside a pipe, the previous methods can be consolidated into two methods to make the energy cycle narrower;one is to optimize the parameters directly, the other is to indirectly add an anticlockwise energy cycle to the original one. The anticlockwise energy cycle has the characteristic of gravitational potential energy or elastic potential energy that reduces with displacement. The highly abstract method can provide a better optimization tool to design a practice system. 展开更多
关键词 vibration ISOLATION natural PERIOD ENERGY CYCLE potential ENERGY KINETIC ENERGY
下载PDF
Design and Analysis of a Horizontal Quasi-Zero Stiffness Vibration Isolator by Combining Rolling-Ball and Disk Springs in Parallel
3
作者 gaofeng guan Dengfeng Xu +2 位作者 Yu Zhu Qiang Li Qiang Yu 《Journal of Beijing Institute of Technology》 EI CAS 2017年第4期468-476,共9页
Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteri... Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteristics of a disk spring are analyzed. The dynamic equation of its motion has been obtained based on Newton's second law. After definition of a error margin,the dynamic equation of the motion can be treated as a Duffing oscillator,and the influences of non-dimensional parameters on the stiffness and transmissibility are studied. The natural frequency and transmissibility are achieved in a linearization range,where the ratio of linear to nonlinear items is small enough.The influence of mass ratio and non-dimensional parameters on natural frequency are analyzed. Finally,a comparison of numerical example demonstrates that the QZS system can realize a lower stiffness within an increased range. 展开更多
关键词 quasi-zero stiffness (QZS) vibration isolation natural frequency TRANSMISSIBILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部