It is of great value to synchronously resolve the critical issues of the polysulfide shuttle and dendrite growth in lithium-sulfur(Li-S)batteries.Herein,a bifunctional Al-based Material of Institute Lavoisier-53(MIL-5...It is of great value to synchronously resolve the critical issues of the polysulfide shuttle and dendrite growth in lithium-sulfur(Li-S)batteries.Herein,a bifunctional Al-based Material of Institute Lavoisier-53(MIL-53(Al))/carbon nanotube(MIL-53/CNT)composite is reported for this matter,which was constructed by growing an ordered MIL-53(Al)nanorods array on the CNT film.For the sulfur cathode,the proposed structure serves as a multifunctional interlayer to block polysulfides and accelerate their catalytic conversion,thus efficaciously inhibiting the shuttle effect.Meanwhile,when applied as the anode host material(Li@MIL-53/CNT),the flexible CNT film serves as a self-standing framework to accommodate Li metal and alleviate the volume expansion,while the uniform ion channels built by the MIL-53(Al)nanorods array along with the abundant oxygen groups can homogenize Li ion diffusion,enabling a steady Li plating/stripping behavior and limiting the dendrite growth.Not surprisingly,Li-S full battery with MIL-53/CNT interlayer and Li@MIL-53/CNT anode delivers an appreciable specific capacity of 735 mAh·g^(–1)and excellent cycle durability at 5 C,presenting a limited capacity decay of 0.03%per cycle in 500 cycles.Besides,an impressive cycle stability and rate capability are also achieved at high-sulfur loading and lean electrolyte conditions.展开更多
Lithium-sulfur batteries have been regarded as the next-generation rechargeable batteries due to their high theoretical energy density and specific capacity.Nevertheless,the shuttle effect of lithium polysulfides has ...Lithium-sulfur batteries have been regarded as the next-generation rechargeable batteries due to their high theoretical energy density and specific capacity.Nevertheless,the shuttle effect of lithium polysulfides has hindered the development of lithium-sulfur batteries.Herein,a novel zirconium-based metal-organic framework-801 film on carbon cloth was developed as a versatile interlayer for lithium-sulfur batteries.This interlayer has a hierarchical porous structure,suitable for the immobilization of lithium polysulfides and accommodating volume expansion on cycling.Moreover,the MOF-801 material is capable of strongly adsorbing lithium polysulfides and promoting their catalytic conversion,which can be enhanced by the abundant active sites provided by the continuous structure of the MOF-801 films.Based on the above advantages,the lithium-sulfur battery,with the proposed interlayer,delivers an initial discharge capacity of 927 mAh·g^(-1) at 1 C with an extremely low decay rate of 0.04%over 500 cycles.Additionally,a high area capacity of 4.3 mAh·cm^(-2) can be achieved under increased S loading.展开更多
基金support from Outstanding Young Talents Project of Hebei High Education Institutions(BJ2021020)the Natural Science Foundation of Hebei Province(B2019202289).
文摘It is of great value to synchronously resolve the critical issues of the polysulfide shuttle and dendrite growth in lithium-sulfur(Li-S)batteries.Herein,a bifunctional Al-based Material of Institute Lavoisier-53(MIL-53(Al))/carbon nanotube(MIL-53/CNT)composite is reported for this matter,which was constructed by growing an ordered MIL-53(Al)nanorods array on the CNT film.For the sulfur cathode,the proposed structure serves as a multifunctional interlayer to block polysulfides and accelerate their catalytic conversion,thus efficaciously inhibiting the shuttle effect.Meanwhile,when applied as the anode host material(Li@MIL-53/CNT),the flexible CNT film serves as a self-standing framework to accommodate Li metal and alleviate the volume expansion,while the uniform ion channels built by the MIL-53(Al)nanorods array along with the abundant oxygen groups can homogenize Li ion diffusion,enabling a steady Li plating/stripping behavior and limiting the dendrite growth.Not surprisingly,Li-S full battery with MIL-53/CNT interlayer and Li@MIL-53/CNT anode delivers an appreciable specific capacity of 735 mAh·g^(–1)and excellent cycle durability at 5 C,presenting a limited capacity decay of 0.03%per cycle in 500 cycles.Besides,an impressive cycle stability and rate capability are also achieved at high-sulfur loading and lean electrolyte conditions.
基金support from the Natural Science Foundation of Hebei Province(Grant Nos.B2019202289,B2019202199)‘Hundred Talents Program’of Hebei Province(Grant NO.E2019050013)the National Natural Science Foundation of China(Grant No.21908039).
文摘Lithium-sulfur batteries have been regarded as the next-generation rechargeable batteries due to their high theoretical energy density and specific capacity.Nevertheless,the shuttle effect of lithium polysulfides has hindered the development of lithium-sulfur batteries.Herein,a novel zirconium-based metal-organic framework-801 film on carbon cloth was developed as a versatile interlayer for lithium-sulfur batteries.This interlayer has a hierarchical porous structure,suitable for the immobilization of lithium polysulfides and accommodating volume expansion on cycling.Moreover,the MOF-801 material is capable of strongly adsorbing lithium polysulfides and promoting their catalytic conversion,which can be enhanced by the abundant active sites provided by the continuous structure of the MOF-801 films.Based on the above advantages,the lithium-sulfur battery,with the proposed interlayer,delivers an initial discharge capacity of 927 mAh·g^(-1) at 1 C with an extremely low decay rate of 0.04%over 500 cycles.Additionally,a high area capacity of 4.3 mAh·cm^(-2) can be achieved under increased S loading.