Herein,double-perovskite Ba_(2)LaTaO_(6) Eu-doped orange-red phosphors were successfully synthesized using a high-temperature solid-phase method.The phosphor phase purity was investigated using X-ray diffraction and m...Herein,double-perovskite Ba_(2)LaTaO_(6) Eu-doped orange-red phosphors were successfully synthesized using a high-temperature solid-phase method.The phosphor phase purity was investigated using X-ray diffraction and microscopic morphology analyses.Their luminescence properties were investigated using absorption,emission,excitation,and temperature-dependent spectra.The transition mechanism mainly involves a magnetic-dipole transition with an energy transfer mode featuring multipole-multipole interactions,and concentration quenching is achieved via dipole-dipole interactions.In addition,the intensity of the temperature-dependent spectrum increases abnormally between 298 and 373 K,with the luminous intensity at 373 K increasing to 110%of that observed at room temperature.This phenomenon can be attributed to lattice defects in Ba_(2)LaTaO_(6):Eu^(3+),and the phosphor luminous intensity at473 K remains at 80.62%of that at room temperature.In addition,white-light-emitting diode devices based on this novel Ba_(2)LaTaO_(6):0.35Eu^(3+)phosphor were fabricated to evaluate the potential applications of the as-prepared phosphor.展开更多
基金Project supported by the National Natural Science Foundation of China (52262020)the Science and Technology Foundation of Guizhou Province (ZK[2021]yiban 328)。
文摘Herein,double-perovskite Ba_(2)LaTaO_(6) Eu-doped orange-red phosphors were successfully synthesized using a high-temperature solid-phase method.The phosphor phase purity was investigated using X-ray diffraction and microscopic morphology analyses.Their luminescence properties were investigated using absorption,emission,excitation,and temperature-dependent spectra.The transition mechanism mainly involves a magnetic-dipole transition with an energy transfer mode featuring multipole-multipole interactions,and concentration quenching is achieved via dipole-dipole interactions.In addition,the intensity of the temperature-dependent spectrum increases abnormally between 298 and 373 K,with the luminous intensity at 373 K increasing to 110%of that observed at room temperature.This phenomenon can be attributed to lattice defects in Ba_(2)LaTaO_(6):Eu^(3+),and the phosphor luminous intensity at473 K remains at 80.62%of that at room temperature.In addition,white-light-emitting diode devices based on this novel Ba_(2)LaTaO_(6):0.35Eu^(3+)phosphor were fabricated to evaluate the potential applications of the as-prepared phosphor.