期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Simulation of Elastic and Fatigue Properties of Epoxy/SiO_(2) Particle Composites through Molecular Dynamics 被引量:1
1
作者 gaoge zhao Jianzhong Chen +2 位作者 Yong Lv Xiaoyu Zhang Li Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第7期339-357,共19页
The influence of different nanoparticle sizes on the elastic modulus and the fatigue properties of epoxy/SiO_(2) nanocomposite is studied in this paper.Here,the cross-linked epoxy resins formed by the combination of D... The influence of different nanoparticle sizes on the elastic modulus and the fatigue properties of epoxy/SiO_(2) nanocomposite is studied in this paper.Here,the cross-linked epoxy resins formed by the combination of DGEBA and 1,3-phenylenediamine are used as the matrix phase,and spherical SiO_(2) particles are used as the reinforcement phase.In order to simulate the elastic modulus and long-term performance of the composite material at room temperature,the simulated temperature is set to 298 K and the mass fraction of SiO_(2) particles is set to 28.9%.The applied strain rate is 109/s during the simulation of the elastic modulus.The results show that the elastic modulus of the material increases with the increase in particle size.Furthermore,fatigue simulation under strain control is performed on the model with SiO_(2) nanoparticle radius of 12˚A.The results indicate that the influence trend of variable frequencies on the fatigue mechanical response is similar,and the mean stress decreases with the increase in number of cycles.In addition,the smaller the loading period and the more the number of cycles,the greater the mean stress reduction.Finally,the change in energy and free volume fraction are evaluated under fatigue loading condition. 展开更多
关键词 SiO_(2)particle elastic modulus FATIGUE free volume molecular dynamics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部