期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
On w_(∞)-Warfield Cotorsion Modules and Krull Domains
1
作者 Yongyan Pu Wei Zhao +2 位作者 gaohua tang Fanggui Wang Xuelian Xiao 《Algebra Colloquium》 SCIE CSCD 2023年第4期701-712,共12页
Let R be a commutative domain with 1 and Q(≠R)its field of quotients.In this note an R-module M is called w_(∞)-Warfield cotorsion if M∈WC∩P^(⊥)_(w_(∞)),where WC denotes the class of all Warfield cotorsion R-mod... Let R be a commutative domain with 1 and Q(≠R)its field of quotients.In this note an R-module M is called w_(∞)-Warfield cotorsion if M∈WC∩P^(⊥)_(w_(∞)),where WC denotes the class of all Warfield cotorsion R-modules and P_(w_(∞))the class of all w_(∞)-projective R-modules.It is shown that R is a PVMD if and only if all w-cotorsion R-modules are w_(∞)-Warfield cotorsion,and that R is a Krull domain if and only if every w-Matlis cotorsion strong w-module over R is a w_(∞)-Warfield cotorsion w-module. 展开更多
关键词 Krull domainw w_(∞)-Warfield cotorsion module strong w-module w-Matlis cotorsion module
原文传递
Unit groups of quotient rings of complex quadratic rings 被引量:1
2
作者 Yangjiang WEI Huadong SU gaohua tang 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第4期1037-1056,共20页
For a square-free integer d other than 0 and 1, let K = Q(√d), where Q is the set of rational numbers. Then K is called a quadratic field and it has degree 2 over Q. For several quadratic fields K = Q(√d), the r... For a square-free integer d other than 0 and 1, let K = Q(√d), where Q is the set of rational numbers. Then K is called a quadratic field and it has degree 2 over Q. For several quadratic fields K = Q(√d), the ring Rd of integers of K is not a unique-factorization domain. For d 〈 0, there exist only a finite number of complex quadratic fields, whose ring Rd of integers, called complex quadratic ring, is a unique-factorization domain, i.e., d = -1,-2,-3,-7,-11,-19,-43,-67,-163. Let Q denote a prime element of Rd, and let n be an arbitrary positive integer. The unit groups of Rd/(Q^n) was determined by Cross in 1983 for the case d = -1. This paper completely determined the unit groups of Rd/(Q^n) for the cases d = -2, -3. 展开更多
关键词 Complex quadratic ring quotient ring unit group quadratic field
原文传递
An Upper Bound for the w-Weak Global Dimension of Pullbacks
3
作者 Jin Xie gaohua tang 《Algebra Colloquium》 SCIE CSCD 2021年第4期689-700,共12页
Let R be a commutative ring with identity and I0 an ideal of R.We introduce and study the c-weak global dimension c-w.gl.dim(R/I0)of the factor ring R/I0.Let T be a w-linked extension of R,and we also introduce the wR... Let R be a commutative ring with identity and I0 an ideal of R.We introduce and study the c-weak global dimension c-w.gl.dim(R/I0)of the factor ring R/I0.Let T be a w-linked extension of R,and we also introduce the wR-weak global dimension wR-w.gl.dim(T)of T.We show that the ring T with wR-w.gl.dim(T)=0 is exactly a field and the ring T with wR-w.gl.dim(T)≤1 is exactly a PwRMD.As an application,we give an upper bound for the w-weak global dimension of a Cartesian square(RDTF,M).More precisely,if T is w-linked over R,then w-w.gl.dim(R)≤max{wR-w.gl.dim(T)+w-fdR T,c-w.gl.dim(D)+w-fdn D}.Furthermore,for a Milnor square(RDTF,M),we obtain w-w.gl.dim(R)≤max{wR-w.gl.dim(T)+w-fdR T,w-w.gl.dim(D)+w-fdR D}. 展开更多
关键词 c-operation c-flat module c-flat dimension wR-flat module WR-flat dimension
原文传递
Notes on Rings with Strong 2-Sum Property
4
作者 Yu Li Huadong Su +1 位作者 gaohua tang Yiqiang Zhou 《Algebra Colloquium》 SCIE CSCD 2020年第4期821-830,共10页
A ring is said to satisfy the strong 2-sum property if every element is a sum of two commuting units.In this note,we present some sufficient or necessary conditions for the matrix ring over a commutative local ring to... A ring is said to satisfy the strong 2-sum property if every element is a sum of two commuting units.In this note,we present some sufficient or necessary conditions for the matrix ring over a commutative local ring to have the strong 2-sum property. 展开更多
关键词 (strong)2-sum property involution property unit matrix ring local ring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部