期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tourism Traffic Demand Prediction Using Google Trends Based on EEMD-DBN 被引量:3
1
作者 Yi Xiao Xueting Tian +2 位作者 John J. Liu gaohui cao Qingxing Dong 《Engineering(科研)》 2020年第3期194-215,共22页
Predicting tourism traffic demand accurately plays an important role in making effective policies for tourist administration. It helps to distribute the resources reasonably and avoid the tourism congestions. This pap... Predicting tourism traffic demand accurately plays an important role in making effective policies for tourist administration. It helps to distribute the resources reasonably and avoid the tourism congestions. This paper considered the noise interference and proposed a hybrid model, combining ensemble empirical mode decomposition (EEMD), deep belief network (DBN) and Google trends, for tourism traffic demand prediction. This model firstly applied dislocation weighted synthesis method to combine Google trends into a search composite index, and then it denoised the series with EEMD. EEMD extracted the high frequency noise from the original series. The low frequency series of search composite index would be used to forecast the low frequency tourism traffic series. Taking the inbound tourism in Shanghai as an example, this paper trained the model and predicted the next 12 months tourism arrivals. The conclusion demonstrated that the forecast error of EEMD-DBN model is lower remarkably than the baselines of ARIMA, GM(1,1), FTS, SVM, CES and DBN model. This revealed that nosing processing is necessary and EEMD-DBN forecast model can improve the prediction accuracy. 展开更多
关键词 TOURISM Traffic Demand Forecasting DEEP Learning GOOGLE TRENDS Composite Search Index Ensemble Empirical Mode Decomposition (EEMD) DEEP BELIEF Network (DBN)
下载PDF
Numerical simulation of the dynamic migration mechanism and prediction of saturation of tight sandstone oil
2
作者 gaohui cao Mian LIN +2 位作者 Likuan ZHANG Lili JI Wenbin JIANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第1期179-195,共17页
Quantitative characterization of tight sandstone oil migration and accumulation is an emerging research frontier in the field of oil and gas exploration.In this study,a conceptual model containing multiple basic geolo... Quantitative characterization of tight sandstone oil migration and accumulation is an emerging research frontier in the field of oil and gas exploration.In this study,a conceptual model containing multiple basic geological elements is developed,and a nonlinear seepage numerical model for tight sandstone oil migration and accumulation is established.The effects of the slip effect,overpressure driving force,buoyancy,and capillary force on the migration and accumulation of tight oil are examined.The results showed that(1)the differences in oil migration and accumulation between tight and conventional reservoirs are reflected in the growth mode of oil saturation,distribution characteristics of oil and water,and extent of the effect of the formation dip angle;(2)the slip effect has a significant impact when the average pore throat radius is less than 150 nm and the overpressure driving force and capillary force are the main mechanical mechanisms controlling oil migration and accumulation in tight sandstone,while the coupling effect of buoyancy,capillary force,and overpressure driving force controls the upper and lower limits of oil saturation.Finally,a dimensional and dimensionless identification chart for rapidly predicting the oil saturation of tight sandstone is proposed and verified using the measured data.This study provides a basis for analyzing the migration and accumulation mechanisms of tight sandstone oil and a new approach for predicting oil saturation.Additionally,we developed digital and visual analysis methods for the migration results,enriching the expression of the dynamics of hydrocarbon accumulation. 展开更多
关键词 Tight sandstone Migration and accumulation DYNAMICS Oil saturation Numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部