期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Development of Intrinsic Room-Temperature 2D Ferromagnetic Crystals for 2D Spintronics 被引量:2
1
作者 靳雯 张高节 +3 位作者 武浩 杨丽 张文峰 常海欣 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第5期71-77,共7页
Two-dimensional(2D)ferromagnetic crystals with fascinating optical and electrical properties are crucial for nanotechnology and have a wide variety of applications in spintronics.However,low Curie temperatures of most... Two-dimensional(2D)ferromagnetic crystals with fascinating optical and electrical properties are crucial for nanotechnology and have a wide variety of applications in spintronics.However,low Curie temperatures of most 2D ferromagnetic crystals seriously hinder their practical applications,thus searching for intrinsic roomtemperature 2D ferromagnetic crystals is of great importance for development of information technology.Fortunately,progresses have been achieved in the last few years.Here we review recent advances in the field of intrinsic room-temperature 2D ferromagnetic crystals and introduce their applications in spintronic devices based on van der Waals heterostructures.Finally,the remaining challenge and future perspective on the development direction of intrinsic room-temperature 2D ferromagnetic crystals for 2D spintronics and van der Waals spintronics are briefly summarized. 展开更多
关键词 FERROMAGNETIC summarized SEARCHING
下载PDF
Enhanced Magnetic Interaction between Ga and Fe in Two-Dimensional van der Waals Ferromagnetic Crystal Fe_(3)GaTe_(2)
2
作者 查鹤鸣 李炜 +7 位作者 张高节 刘文晶 邓力玮 姜琦 叶茂 武浩 常海欣 乔山 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第8期108-112,共5页
Fe_(3)GaTe_(2),a recently discovered van der Waals ferromagnetic crystal with the highest Curie temperature and strong perpendicular magnetic anisotropy among two-dimensional(2D)magnetic materials,has attracted signif... Fe_(3)GaTe_(2),a recently discovered van der Waals ferromagnetic crystal with the highest Curie temperature and strong perpendicular magnetic anisotropy among two-dimensional(2D)magnetic materials,has attracted significant attention and makes it a promising candidate for next-generation spintronic applications.Compared with Fe_(3)GeTe_(2),which has the similar crystal structure,the mechanism of the enhanced ferromagnetic properties in Fe_(3)GaTe_(2)is still unclear and needs to be investigated.Here,by using x-ray magnetic circular dichroism measurements,we find that both Ga and Te atoms contribute to the total magnetic moment of the system with antiferromagnetic coupling to Fe atoms.Our first-principles calculations reveal that Fe_(3)GaTe_(2)has van Hove singularities at the Fermi level in nonmagnetic state,resulting in the magnetic instability of the system and susceptibility to magnetic phase transitions.In addition,the calculation results about the density of states in ferromagnetic states of two materials suggest that the exchange interaction between Fe atoms is strengthened by replacing Ge atoms with Ga atoms.These findings indicate the increase of both the itinerate and local moments in Fe_(3)GaTe_(2)in view of Stoner and exchange interaction models,which results in the enhancement of the overall magnetism and a higher Curie temperature.Our work provides insight into the underlying mechanism of Fe_(3)GaTe_(2)’s remarkable magnetic properties and has important implications for searching 2D materials with expected magnetic properties in the future. 展开更多
关键词 MAGNETIC FERROMAGNETIC mechanism
下载PDF
Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals
3
作者 张高节 罗清源 +8 位作者 文晓琨 武浩 杨丽 靳雯 李路吉 张佳 张文峰 舒海波 常海欣 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第11期131-138,共8页
The discovery and manipulation of topological Hall effect(THE),an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction(DMI),are promising for next-generation spintronic devices ba... The discovery and manipulation of topological Hall effect(THE),an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction(DMI),are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions.However,most skyrmions and THE are stabilized in a narrow temperature window either below or over room temperature with high critical current manipulation.It is still elusive and challenging to achieve large THE with both wide temperature window till room temperature and low critical current manipulation.Here,using controllable,naturally oxidized sub-20 and sub-10 nm 2D van der Waals room-temperature ferromagnetic Fe_(3)GaTe_(2-x)crystals,we report robust 2D skyrmion THE with ultrawide temperature window ranging in three orders of magnitude from 2 to 300 K,in combination with giant THE of~5.4μΩ·cm at 10 K and~0.15μΩ·cm at 300 K,which is 1–3 orders of magnitude larger than that of all known room-temperature 2D skyrmion systems.Moreover,room-temperature current-controlled THE is also realized with a low critical current density of~6.2×10^(5)A·cm^(-2).First-principles calculations unveil natural oxidation-induced highly enhanced 2D interfacial DMI reasonable for robust giant THE.This work paves the way to room-temperature electrically controlled 2D THE-based practical spintronic devices. 展开更多
关键词 TOPOLOGICAL MANIPULATION magnetic
下载PDF
Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions 被引量:4
4
作者 Wenkai Zhu Shihong Xie +15 位作者 Hailong Lin gaojie zhang Hao Wu Tiangui Hu Ziao Wang Xiaomin zhang Jiahan Xu Yujing Wang Yuanhui Zheng Faguang Yan Jing zhang Lixia Zhao Amalia Patanè Jia zhang Haixin Chang Kaiyou Wang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2022年第12期99-103,共5页
A magnetic tunnel junction(MTJ)is the core component in memory technologies,such as the magnetic random-access memory,magnetic sensors and programmable logic devices.In particular,MTJs based on twodimensional van der ... A magnetic tunnel junction(MTJ)is the core component in memory technologies,such as the magnetic random-access memory,magnetic sensors and programmable logic devices.In particular,MTJs based on twodimensional van der Waals(vd W)heterostructures offer unprecedented opportunities for low power consumption and miniaturization of spintronic devices.However,their operation at room temperature remains a challenge.Here,we report a large tunnel magnetoresistance(TMR)of up to 85%at room temperature(T=300 K)in vdW MTJs based on a thin(<10 nm)semiconductor spacer WSe_(2)layer embedded between two Fe_(3)GaTe_(2e)lectrodes with intrinsic above-room-temperature ferromagnetism.The TMR in the MTJ increases with decreasing temperature up to 164%at T=10 K.The demonstration of TMR in ultra-thin MTJs at room temperature opens a realistic and promising route for next-generation spintronic applications beyond the current state of the art. 展开更多
关键词 RESISTANCE SPACER TUNNEL
下载PDF
Fabrication of titania thin film with composite nanostructure and its ability to photodegrade rhodamine B in water
5
作者 gaojie zhang Jinming WU +1 位作者 Shaoguang LIU Mi YAN 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2008年第1期44-48,共5页
A titania nanorod filmwas synthesized by direct oxidation of metallic Ti with hydrogen peroxide solution under a low temperature.Titania nanoparticles were then filled into the gaps among the nanorods through an infil... A titania nanorod filmwas synthesized by direct oxidation of metallic Ti with hydrogen peroxide solution under a low temperature.Titania nanoparticles were then filled into the gaps among the nanorods through an infiltration sol-gel procedure to form a composite titania film with an ordered nanostructure.X-ray diffraction spectra indicate that the composite film was a mixture of anatase and rutile while the titania film obtained by only using a sol-gel procedure was pure anatase.Field emission scanning electron microscopy observations show that titania nanoparticles were embedded into the titania nanorod film.Photoluminescence spectra suggest the enhanced separation of electron and hole pairs for the obtained composite titania film over the corresponding titania nanorod film.The composite titania film exhibited improved ability to photodegrade rhodamine B in water compared with the titania nanorod film.The apparent photodegradation rate constant,fitting a pseudo-first-order,was 3 times of that obtained by the sol-gel derived titania film at the same weight.The improved photocata-lytic activity for the composite titania film could be attributed to the enhanced separation of electron and hole pairs due to the embedding of the titania nanoparticles within the titania nanorods. 展开更多
关键词 TITANIA composite catalyst film SOL-GEL nanorod photoluminescence spectra
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部