Microstructure inhomogeneity and negative segregation have long been challenges for large-size alloy ingots,directly affecting the downstream processing and final performance of products.Here,we used2024 aluminum allo...Microstructure inhomogeneity and negative segregation have long been challenges for large-size alloy ingots,directly affecting the downstream processing and final performance of products.Here,we used2024 aluminum alloy as a model alloy to propose a technique,named double-cooling field casting,i.e.,one 2024 Al alloy rod(Φ20 mm)at room temperature was introduced into the melt along the central axis of the hot-top with the protection of a thermal-insulation tube during the direct chill(DC)casting process of aΦ300 mm 2024 Al alloy ingot.The results show that the introduction of the same alloy solid insert has a remarkable influence on refining grains in the center region of the ingot,reducing negative centerline segregation and decreasing the depth of the center part of the sump.With the application of the 2024 Al insert,the mean size of equiaxed grains at the center part of the ingot decreased from1204±132μm to 721±69μm.The relative deviation of the Cu and Mg main solutes reduced from-0.062 and-0.054 to-0.03 and-0.024,respectively,and the sump depth decreased from 280 mm to242 mm.Moreover,the shape of the solidification front was changed from‘V’-shaped to‘W’-shaped.The ingot quality was thus improved,mainly arising from the dissolution of the cold 2024 Al insert at a proper position of the hot-top counteracting some latent heat of solidification of the ingot,dissipating the heat of the central part of the hot-top by conducting the 2024 Al insert to the outside,and providing extra-nuclei from the unmoltenα-Al particles of the insert.展开更多
This work explores the microstructure of low frequency electromagnetic casting (LFEC) 7075 aluminum alloys and investigates the effect of heat treatment process on its mechanical properties via the mechanical proper...This work explores the microstructure of low frequency electromagnetic casting (LFEC) 7075 aluminum alloys and investigates the effect of heat treatment process on its mechanical properties via the mechanical properties test, X-ray diffraction and transmission electron microscopy. It was found that the grains of LFEC ingot were finer and more evenly distributed than that of the conventional direct chill cast (DC) ingots. The microstructure of LFEC ingot extruded kept their original as-cast struc- ture with small and fine grains. With the same extrusion ratio, the average grain diameters of LFEC and conventional DC extruded were about 10 and 20 #m, re- spectively. LFEC extruded also had a better aging property, since the regime of T6 treatment peak value aging was at 120 ~C for 24 h, the tensile strength and hardness (HV) of the LFEC extruded were 673.50 MPa and 194.62, respectively, which were all higher than those of the conventional DC extruded, indicating that the process regime can be applied in the industrial production.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities(Nos.N2002025,N2109006 and N2109007)the Project of Promoting Talents in Liaoning Province(No.XLYC1808038)。
文摘Microstructure inhomogeneity and negative segregation have long been challenges for large-size alloy ingots,directly affecting the downstream processing and final performance of products.Here,we used2024 aluminum alloy as a model alloy to propose a technique,named double-cooling field casting,i.e.,one 2024 Al alloy rod(Φ20 mm)at room temperature was introduced into the melt along the central axis of the hot-top with the protection of a thermal-insulation tube during the direct chill(DC)casting process of aΦ300 mm 2024 Al alloy ingot.The results show that the introduction of the same alloy solid insert has a remarkable influence on refining grains in the center region of the ingot,reducing negative centerline segregation and decreasing the depth of the center part of the sump.With the application of the 2024 Al insert,the mean size of equiaxed grains at the center part of the ingot decreased from1204±132μm to 721±69μm.The relative deviation of the Cu and Mg main solutes reduced from-0.062 and-0.054 to-0.03 and-0.024,respectively,and the sump depth decreased from 280 mm to242 mm.Moreover,the shape of the solidification front was changed from‘V’-shaped to‘W’-shaped.The ingot quality was thus improved,mainly arising from the dissolution of the cold 2024 Al insert at a proper position of the hot-top counteracting some latent heat of solidification of the ingot,dissipating the heat of the central part of the hot-top by conducting the 2024 Al insert to the outside,and providing extra-nuclei from the unmoltenα-Al particles of the insert.
基金supported by the National Natural Science Foundation of China (Youth)(No.51004036)the Fundamental Research Funds (No. N110408005)
文摘This work explores the microstructure of low frequency electromagnetic casting (LFEC) 7075 aluminum alloys and investigates the effect of heat treatment process on its mechanical properties via the mechanical properties test, X-ray diffraction and transmission electron microscopy. It was found that the grains of LFEC ingot were finer and more evenly distributed than that of the conventional direct chill cast (DC) ingots. The microstructure of LFEC ingot extruded kept their original as-cast struc- ture with small and fine grains. With the same extrusion ratio, the average grain diameters of LFEC and conventional DC extruded were about 10 and 20 #m, re- spectively. LFEC extruded also had a better aging property, since the regime of T6 treatment peak value aging was at 120 ~C for 24 h, the tensile strength and hardness (HV) of the LFEC extruded were 673.50 MPa and 194.62, respectively, which were all higher than those of the conventional DC extruded, indicating that the process regime can be applied in the industrial production.