In this paper the anticorrosive properties of the few-layer graphene nanostructures were investigated. On the surface ofcopper and nickel plates the few-layer graphene nanostructures were formed using the CVD (chemic...In this paper the anticorrosive properties of the few-layer graphene nanostructures were investigated. On the surface ofcopper and nickel plates the few-layer graphene nanostructures were formed using the CVD (chemical vapor deposition) method.After that, these plates were exposed to the temperature in the air atmosphere. The results of elemental analysis, performed by theEDS (energy dispersive spectroscopy) method showed that the few-layer graphene coated metal plates proved to be more resistant tooxidation than bare metal plates. In addition, we presented computer models and theoretical calculations of the studied systems,performed by the DFT (density functional theory) and MD (molecular dynamics) methods. These results combined with experimentaldata show the high effectiveness of the protective action of the few-layer graphene against metal corrosion.展开更多
文摘In this paper the anticorrosive properties of the few-layer graphene nanostructures were investigated. On the surface ofcopper and nickel plates the few-layer graphene nanostructures were formed using the CVD (chemical vapor deposition) method.After that, these plates were exposed to the temperature in the air atmosphere. The results of elemental analysis, performed by theEDS (energy dispersive spectroscopy) method showed that the few-layer graphene coated metal plates proved to be more resistant tooxidation than bare metal plates. In addition, we presented computer models and theoretical calculations of the studied systems,performed by the DFT (density functional theory) and MD (molecular dynamics) methods. These results combined with experimentaldata show the high effectiveness of the protective action of the few-layer graphene against metal corrosion.