Aluminum doped hydroxyapatite (HA:AI3 +) nanopowders were successfully prepared via a simple and efficient one-pot mechanochemical route. The effects of dopant loading on phase compositions and structural features...Aluminum doped hydroxyapatite (HA:AI3 +) nanopowders were successfully prepared via a simple and efficient one-pot mechanochemical route. The effects of dopant loading on phase compositions and structural features were assessed by Rietveld analysis. The XRD-Rietveld refinement revealed the stabilization of HA in hexagonal structure for all the samples. The sharpness and intensity of the apatite-derived XRD peaks decreased as the dopant content increased to 10% due to the increase in lattice imperfections and mechanically induced amorphization. The incorpo- ration of A13 + into the HA lattice decreased the unit cell parameters. From the FfiR measurements, the representing bands of apatite were identified in all cases. The mechanosynthesized nanopowders consisted of nanospheroids with an average size of 44 - 20 nm and therefore are promising for bone tissue regeneration.展开更多
基金Supported by the National Science Foundation(PREM center for interfaces,DMR-1205670)the Robert A.Welch Foundation(Al-0045)
文摘Aluminum doped hydroxyapatite (HA:AI3 +) nanopowders were successfully prepared via a simple and efficient one-pot mechanochemical route. The effects of dopant loading on phase compositions and structural features were assessed by Rietveld analysis. The XRD-Rietveld refinement revealed the stabilization of HA in hexagonal structure for all the samples. The sharpness and intensity of the apatite-derived XRD peaks decreased as the dopant content increased to 10% due to the increase in lattice imperfections and mechanically induced amorphization. The incorpo- ration of A13 + into the HA lattice decreased the unit cell parameters. From the FfiR measurements, the representing bands of apatite were identified in all cases. The mechanosynthesized nanopowders consisted of nanospheroids with an average size of 44 - 20 nm and therefore are promising for bone tissue regeneration.