Photocatalytic discoloration kinetics of Reactive Black 5 (RB5), a vinylsulfone dye, has been studied spectrophotometrically by following the decrease in dye concentration with time at ambient conditions using a flow ...Photocatalytic discoloration kinetics of Reactive Black 5 (RB5), a vinylsulfone dye, has been studied spectrophotometrically by following the decrease in dye concentration with time at ambient conditions using a flow loop reactor. UV lump, Black Light Blue (BLB) emitting at maximum wavelength of 365 nm and Ahlstrom Research Service paper consistent of TiO2 P500 coated on non woven paper was used respectively as source of UV light and photocatalyst. At natural pH, the result shows that photolysis of RB5 and its adsorption in the presence of photocatalyst was negligible while the photocatalytic oxidation (PCO) permits 30.8% of RB5 degradation. The degradation of dye was studied under a variety of conditions such as volumetric flow rate, initial pH, photocatalyst reuse, and in the presence of electron acceptor such as sodium persulphate ((Na)2S2O8). The degradation rates were found to be strongly influenced by all the above parameters. The circulation flow rate of 108 L/h was the best. The rate constant calculated when the initial pH was varied shows that pH 3 was more favorable for RB5 removal. Peroxydisulphate ions have the strong effect on RB5 discoloration even in dark without and with photocatalyst. When UV light was used in the presence of photocatalyst, 50 min was enough for quasi-total removal of RB5 with (0.2 M).展开更多
The present study aimed to assess the physicochemical and microbiological quality of shallow groundwater tapped by private boreholes for water sale in Togo’s most urbanized coastal areas. Ninety-six (96) groundwater ...The present study aimed to assess the physicochemical and microbiological quality of shallow groundwater tapped by private boreholes for water sale in Togo’s most urbanized coastal areas. Ninety-six (96) groundwater samples were collected at the water sale points for chemical and microbiological analyses using standard methods. The results showed that groundwater is predominantly acidic with fresh and brackish water of Na-Cl type. High concentrations of dissolved inorganic nitrogen (NO<sub>3</sub><sup>-</sup> , NH<sub>4</sub><sup>+</sup>and NO<sub>2</sub><sup>-</sup>) and permanganate indices indicating potential organic matter were found. Among the major ions, Na<sup>+</sup> (46.9%), Cl<sup><span style="font-size:10px;white-space:normal;">-</span></sup> (51.0%) and <span style="white-space:normal;">NO</span><sub style="white-space:normal;">3</sub><sup style="white-space:normal;">-</sup> (50.0%) present the highest percentages of unsuitable concentrations compared to WHO guidelines. These findings indicate the control of the natural impact of seawater and lagoon system and anthropogenic pollution from domestic and urban wastes on groundwater’s physicochemical quality. About 65% of groundwater samples did not comply with the drinking water guidelines for microbial indicators, including total mesophilic flora, thermotolerant coliforms, and sulfite-reducing anaerobes. The results showed the failure of sanitation and hygiene conditions around sampling points and fecal contamination from sewage, pit latrines, septic tanks, and refuse and waste disposal. The degradation of physicochemical quality is higher in the old and high-density built-up areas. Simultaneously, microbial contamination represents a high risk of contracting waterborne or hygiene-sanitation-related diseases in the whole study area. This study provides a global view of shallow groundwater’s physicochemical and microbiological quality in the study area. Limitations and suggestions for future research are discussed.展开更多
文摘Photocatalytic discoloration kinetics of Reactive Black 5 (RB5), a vinylsulfone dye, has been studied spectrophotometrically by following the decrease in dye concentration with time at ambient conditions using a flow loop reactor. UV lump, Black Light Blue (BLB) emitting at maximum wavelength of 365 nm and Ahlstrom Research Service paper consistent of TiO2 P500 coated on non woven paper was used respectively as source of UV light and photocatalyst. At natural pH, the result shows that photolysis of RB5 and its adsorption in the presence of photocatalyst was negligible while the photocatalytic oxidation (PCO) permits 30.8% of RB5 degradation. The degradation of dye was studied under a variety of conditions such as volumetric flow rate, initial pH, photocatalyst reuse, and in the presence of electron acceptor such as sodium persulphate ((Na)2S2O8). The degradation rates were found to be strongly influenced by all the above parameters. The circulation flow rate of 108 L/h was the best. The rate constant calculated when the initial pH was varied shows that pH 3 was more favorable for RB5 removal. Peroxydisulphate ions have the strong effect on RB5 discoloration even in dark without and with photocatalyst. When UV light was used in the presence of photocatalyst, 50 min was enough for quasi-total removal of RB5 with (0.2 M).
文摘The present study aimed to assess the physicochemical and microbiological quality of shallow groundwater tapped by private boreholes for water sale in Togo’s most urbanized coastal areas. Ninety-six (96) groundwater samples were collected at the water sale points for chemical and microbiological analyses using standard methods. The results showed that groundwater is predominantly acidic with fresh and brackish water of Na-Cl type. High concentrations of dissolved inorganic nitrogen (NO<sub>3</sub><sup>-</sup> , NH<sub>4</sub><sup>+</sup>and NO<sub>2</sub><sup>-</sup>) and permanganate indices indicating potential organic matter were found. Among the major ions, Na<sup>+</sup> (46.9%), Cl<sup><span style="font-size:10px;white-space:normal;">-</span></sup> (51.0%) and <span style="white-space:normal;">NO</span><sub style="white-space:normal;">3</sub><sup style="white-space:normal;">-</sup> (50.0%) present the highest percentages of unsuitable concentrations compared to WHO guidelines. These findings indicate the control of the natural impact of seawater and lagoon system and anthropogenic pollution from domestic and urban wastes on groundwater’s physicochemical quality. About 65% of groundwater samples did not comply with the drinking water guidelines for microbial indicators, including total mesophilic flora, thermotolerant coliforms, and sulfite-reducing anaerobes. The results showed the failure of sanitation and hygiene conditions around sampling points and fecal contamination from sewage, pit latrines, septic tanks, and refuse and waste disposal. The degradation of physicochemical quality is higher in the old and high-density built-up areas. Simultaneously, microbial contamination represents a high risk of contracting waterborne or hygiene-sanitation-related diseases in the whole study area. This study provides a global view of shallow groundwater’s physicochemical and microbiological quality in the study area. Limitations and suggestions for future research are discussed.