Background: Hydrogen-rich saline(HRS) has antioxidative, anti-inflammatory and anti-apoptotic properties. We investigated the effects of hydrogen on hepatic ischemia-reperfusion(I/R) and laparoscopic hepatectomy in sw...Background: Hydrogen-rich saline(HRS) has antioxidative, anti-inflammatory and anti-apoptotic properties. We investigated the effects of hydrogen on hepatic ischemia-reperfusion(I/R) and laparoscopic hepatectomy in swine. Methods: Twenty-one healthy Bama miniature pigs were randomly divided into the sham group, ischemia-reperfusion injury(IRI) group, HRS-5(5 m L/kg) group, and HRS-10(10 m L/kg) group. HRS was injected through the portal vein 10 min before reperfusion and at postoperative day 1, 2 and 3. The roles of HRS on oxidative stress, inflammatory response and liver regeneration were studied. Results: Compared with the IRI group, HRS treatment attenuated oxidative stress by increasing catalase activity and reducing myeloperoxidase. White blood cells in the HRS-10 group were reduced compared with the IRI group( P < 0.01). In the HRS-10 group, interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha, C-reactive protein and cortisol were downregulated, whereas interleukin-10 was upregulated. In addition, HRS attenuated endothelial cell injury and promoted the secretion of angiogenic cytokines, including vascular endothelial growth factor, angiopoietin-1 and angiopoietin-2. HRS elevated the levels of hepatocyte growth factor, Cyclin D1, proliferating cell nuclear antigen, Ki-67 and reduced the secretion of transforming growth factor-beta. Conclusions: HRS treatment may exert a protective effect against I/R and hepatectomy-induced hepatic damage by reducing oxidative stress, suppressing the inflammatory response and promoting liver regeneration.展开更多
The bHLH transcription factors play pivotal roles in plant growth and development,production of secondary metabolites and responses to various environmental stresses.Although the bHLH genes have been well studied in m...The bHLH transcription factors play pivotal roles in plant growth and development,production of secondary metabolites and responses to various environmental stresses.Although the bHLH genes have been well studied in model plant species,a comprehensive investigation of the bHLH genes is required for tobacco with newly obtained high-quality genome.In the present study,a total of 309 NtbHLH genes were identified and can be divided into 23 subfamilies.The conserved amino acids which are essential for their function were predicted for the NtbHLH proteins.Moreover,the NtbHLH genes were conserved during evolution through analyzing the gene structures and conserved motifs.A total of 265 NtbHLH genes were localized in the 24 tobacco chromosomes while the remained 44 NtbHLH genes were mapped to the scaffolds due to the complexity of tobacco genome.Moreover,transcripts of NtbHLH genes were obviously tissue-specific expressed from the gene-chip data from 23 tobacco tissues,and expressions of 20 random selected NtbHLH genes were further confirmed by quantitative real-time PCR,indicating their potential functions in the plant growth and development.Importantly,overexpressed NtbHLH86 gene confers improve drought tolerance in tobacco indicating that it might be involved in the regulation of drought stress.Therefore,our findings here provide a valuable information on the characterization of NtbHLH genes and further investigation of their functions in tobacco.展开更多
New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also du...New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment.Electro-Fenton technology is an effective method to remove PPCPs from water.Novel particle electrodes(MMT/rGO/Fe_(3)O_(4))were synthesized by depositing Fe3O4 nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional electro-Fenton(3D-EF)system.The electrodes combined the catalytic property of Fe3O4,hydrophilicity of montmorillonite and electrical conductivity of graphene oxides,and applied for the degradation of Acyclovir(ACV)with high efficiency and ease of operation.At optimal condition,the degradation rate of ACV reached 100%within 120 min,and the applicable pH range could be 3 to 11 in the 3D-EF system.The stability and reusability of MMT/rGO/Fe_(3)O_(4)particle electrodes were also studied,the removal rate of ACV remained at 92%after 10 cycles,which was just slightly lower than that of the first cycle.Potential degradation mechanisms were also proposed by methanol quenching tests and FT-ICR-MS.展开更多
Biomolecular condensates or membraneless organelles(MLOs)formed by liquid-liquid phase separation(LLPS)divide intracellular spaces into discrete compartments for specific functions.Dysregulation of LLPS or aberrant ph...Biomolecular condensates or membraneless organelles(MLOs)formed by liquid-liquid phase separation(LLPS)divide intracellular spaces into discrete compartments for specific functions.Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration,tumorigenesis,and many other pathological processes.Herein,we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation.We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders,hearing loss,cancers,and immunological diseases.Finally,we describe the emerging discovery of chemical modulators of phase separation.展开更多
Phytosterols,which are naturally occurring in plants,have excellent nutritional and health values on lowering both the blood cholesterol level and the risk of cardiovascular diseases.Edible oils are the main source of...Phytosterols,which are naturally occurring in plants,have excellent nutritional and health values on lowering both the blood cholesterol level and the risk of cardiovascular diseases.Edible oils are the main source of daily intake of phytosterols,whereas the properties of phytosterols may vary a lot depending on their sources.During the processing of edible oil including refining and frying,phytosterol's content fluctuates,which influences the properties of the final product.Phytosterols and their derivatives undergo physical migration between different phases and chemical conversion during the processing,which reduces the quality and the commercial value of edible oils.Therein,the loss of phytosterols is the major concern in the process of neutralization and deodorization.In addition,oxidation and thermal degradation of phytosterols occur simultaneously during frying,which also reduces the content of phytosterols.Nevertheless,the oil matrix has a promoting or an inhibitory effect on the thermal oxidation of phytosterols.Therefore,various efforts have been devoted to analyzing and improving the remaining contents of phytosterols in edible oil.Regardless of the processing method,temperature plays an important role in the loss of phytosterols.At present,themain analysismethods of phytosterols include gas chromatography and liquid chromatography,inwhich the pretreatment of different types of phytosterols is also a crucial step.This review focused on the following topics comprehensively:(i)the distribution of phytosterols in the oil-containing plants and edible oils during the refining processing;(ii)the pretreatment and analysis methods of various phytosterols(free phytosterols,phytosteryl fatty acid esters,phytosteryl glycosides and acylated phytosteryl glycosides);(iii)the variation of phytosterols in process of esterification and oxidation,storage and so on.The study also proposed that the investigation in the loss and safety of phytosterols during processing of the vegetable oils should be proceeded further in combination with efficient and accurate chromatography methods.展开更多
Phytosterols have received extensive attention owing to their excellent cholesterol-lowering activity and the role in cardiovascular diseases prevention. However, poor solubility in both oil and water limited the appl...Phytosterols have received extensive attention owing to their excellent cholesterol-lowering activity and the role in cardiovascular diseases prevention. However, poor solubility in both oil and water limited the application of free phytosterols in the food industry. Chemical or enzymatic modifications were effective to improve the physicochemical properties as well as the bioavailability and cholesterollowering activity of phytosterols. Higher oil solubility and lower melting point of phytosterols have been achieved by esterification and transesterification with fatty acids and triacylglycerols so as to enhance the bioavailability, reduce formation of precipitates, and improve the sensory quality of products.While the researches on the improvement on its water solubility is a hot topic. Hydrophilic phytosterol derivatives have promising applications in the food industry because most of foods belong to aqueous matrix. Hydrophilic modification is useful and meaningful for phytosterols in both industrial and commercial applications. This review mainly highlights the hydrophilic phytosterol derivatives in the following aspects:(i) hydrophilic modifications of phytosterols by coupling with various polar components;(ii) cholesterol-lowering activity and possible molecular mechanisms of hydrophilic phytosterol derivatives on reducing serum cholesterol level;and(iii) safety evaluation of hydrophilic phytosterol derivatives in cell-culture studies, animal models and clinical trials.展开更多
Traditional methods of preparing metal-organic frameworks(MOFs)compounds have the disadvantages such as poor dispersion,inefficient and discontinuous process.In this work,microchannel reactor is used to prepare MOFs-d...Traditional methods of preparing metal-organic frameworks(MOFs)compounds have the disadvantages such as poor dispersion,inefficient and discontinuous process.In this work,microchannel reactor is used to prepare MOFs-derived zeolite-imidazole material via flash nanoprecipitation to form ZIF-67+PEI(FNP),which reduces the MOF synthesis time down to millisecond time interval while keeping the synthesized ZIF-67+PEI(FNP)highly dispersed.The Co@N–C(FNP)catalyst obtained by flash nanoprecipitation and carbonization has a higher Co content and thus more active sites for oxygen reduction reaction than the Co@N–C(DM)catalyst prepared by direct mixing method.Electrochemical tests show that the Co@N–C(FNP)catalyst prepared by this method has excellent oxygen reduction performance,good methanol resistance and high stability.The onset potential and half-wave potential of Co@N–C(FNP)are 0.92 VRHE and 0.83 VRHE,respectively,which are higher than that of Co@N–C(DM)(Eonset=0.90 VRHEand E1/2=0.83VRHE).Moreover,the Zn-air battery assembled with Co@N–C(FNP)as the cathode catalyst has high open circuit voltage,high power density and large specific capacity.The performance of these batteries has been comparable to that of Pt/C assembled batteries.Density functional theory(DFT)calculations confirm that the Co(220)crystal plane present in Co@N–C(FNP)have stronger adsorption energy than that of Co(111)crystal plane in Co@N–C(DM),leading to better electrocatalytic performance of the former.展开更多
We redefine "green food enterprises" and expound the connotation of "greenification" of food processing industry. Taking the case of Heilongjiang Province, we give an overview of green food enterpr...We redefine "green food enterprises" and expound the connotation of "greenification" of food processing industry. Taking the case of Heilongjiang Province, we give an overview of green food enterprises in Heilongjiang Province, and study the degree of "greenification" of food processing industry in Heilongjiang Province, through the case study of related enterprises. There are some problems in the process of pushing forward "greenification" of food processing industry, such as the high cost of production, varying quality of products, weak R & D capability and the distance limitations of raw material places and the consumer market. The following recommendations are put forth for promoting the "greenification" of food enterprises: (i) Reducing the production costs of green food, and improving the "greenification rate"; (ii) Intensifying policy support, and creating a "green" environment; (iii) Strengthening quality control, and improving consumers trust in green food; (iv) Establishing the network of green marketing, and broadening sales channels of green food.展开更多
The purpose of this article is to explore the application of perception theory in hotel interior design. Through the analysis of the theory of perception, the article sums up its connection with the interior design of...The purpose of this article is to explore the application of perception theory in hotel interior design. Through the analysis of the theory of perception, the article sums up its connection with the interior design of Modern Hotel, and sums up the hotel interior design method under the influence of three factors of visual perception, space-time perception, logical perception so as to improve the level of humanization. Finally it will provide a basis for hotel interior design in the future.展开更多
To the Editor:Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)show significant efficacy in patients with advanced-stage non-small cell lung cancer(NSCLC)with sensitive EGFR mutations and signific...To the Editor:Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)show significant efficacy in patients with advanced-stage non-small cell lung cancer(NSCLC)with sensitive EGFR mutations and significantly prolong the survival of these patients.However,drug resistance emerges in most patients.Previous studies indicated that cyclin-dependent kinase 4/6(CDK4/6)gene amplification was one of the resistance mechanisms of the EGFR-TKI osimertinib,weakening its efficacy.Treatment options for EGFR-mutant NSCLC patients with CDK4 amplification are limited to add CDK4 inhibitors.展开更多
tDiabetic neuropathic pain(DNP)is the most common disabling complication of diabetes.Emerging evi-dence has linked the pathogenesis of DNP to the aberrant sprouting of sensory axons into the epidermal area;however,the...tDiabetic neuropathic pain(DNP)is the most common disabling complication of diabetes.Emerging evi-dence has linked the pathogenesis of DNP to the aberrant sprouting of sensory axons into the epidermal area;however,the underlying molecular events remain poorly understood.Here we found that an axon guidance molecule,Netrin-3(Ntn-3),was expressed in the sensory neurons of mouse dorsal root ganglia(DRGs),and downregulation of Ntn-3 expression was highly correlated with the severity of DNP in a diabetic mouse model.Genetic ablation of Ntn-3 increased the intra-epidermal sprouting of sensory axons and worsened the DNP in diabetic mice.In contrast,the elevation of Ntn-3 levels in DRGs significantly inhibited the intra-epidermal axon sprouting and alleviated DNP in diabetic mice.In con-clusion,our studies identified Ntn-3 as an important regula-tor of DNP pathogenesis by gating the aberrant sprouting of sensory axons,indicating that Ntn-3 is a potential druggable target for DNP treatment.展开更多
Dear Editor,Peripheral neuropathy is a group of devastating diseases affecting periphe-ral nerves and may cause symptoms such as extreme numbness,muscle weakness,and paralysis.Currently,there are no effective therapie...Dear Editor,Peripheral neuropathy is a group of devastating diseases affecting periphe-ral nerves and may cause symptoms such as extreme numbness,muscle weakness,and paralysis.Currently,there are no effective therapies for these diseases.Great progress has been made in identifying genetic causes for peripheral neuropathy owing to the advances in genetic testing in the last decade.For example,>100 genes have been identified to be associated with Charcot–Marie–Tooth(CMT)neuropathy,a group of disorders among the most common forms of inherited peripheral neuropathy.展开更多
基金supported by grants from the National Natural Science Foundation of China(31472245 and 31772807)
文摘Background: Hydrogen-rich saline(HRS) has antioxidative, anti-inflammatory and anti-apoptotic properties. We investigated the effects of hydrogen on hepatic ischemia-reperfusion(I/R) and laparoscopic hepatectomy in swine. Methods: Twenty-one healthy Bama miniature pigs were randomly divided into the sham group, ischemia-reperfusion injury(IRI) group, HRS-5(5 m L/kg) group, and HRS-10(10 m L/kg) group. HRS was injected through the portal vein 10 min before reperfusion and at postoperative day 1, 2 and 3. The roles of HRS on oxidative stress, inflammatory response and liver regeneration were studied. Results: Compared with the IRI group, HRS treatment attenuated oxidative stress by increasing catalase activity and reducing myeloperoxidase. White blood cells in the HRS-10 group were reduced compared with the IRI group( P < 0.01). In the HRS-10 group, interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha, C-reactive protein and cortisol were downregulated, whereas interleukin-10 was upregulated. In addition, HRS attenuated endothelial cell injury and promoted the secretion of angiogenic cytokines, including vascular endothelial growth factor, angiopoietin-1 and angiopoietin-2. HRS elevated the levels of hepatocyte growth factor, Cyclin D1, proliferating cell nuclear antigen, Ki-67 and reduced the secretion of transforming growth factor-beta. Conclusions: HRS treatment may exert a protective effect against I/R and hepatectomy-induced hepatic damage by reducing oxidative stress, suppressing the inflammatory response and promoting liver regeneration.
基金funded by the National Natural Science Foundation of China(grant number 31760072 to G.Bai,and grant number 31860413 to H.Xie)Yunnan Applied Basic Research Project(grant number 202001AT070010 to G.Bai)the Yunnan Academy of Tobacco Agricultural Sciences(grant numbers YNTC-2016YN22 and CNTC-110202001025(JY08)to H.Xie,YNTC-2016YN24,YNTC-2015YN02,YNTC-2018530000241002,and YNTC-2019530000241003 to D.-H.Yang).
文摘The bHLH transcription factors play pivotal roles in plant growth and development,production of secondary metabolites and responses to various environmental stresses.Although the bHLH genes have been well studied in model plant species,a comprehensive investigation of the bHLH genes is required for tobacco with newly obtained high-quality genome.In the present study,a total of 309 NtbHLH genes were identified and can be divided into 23 subfamilies.The conserved amino acids which are essential for their function were predicted for the NtbHLH proteins.Moreover,the NtbHLH genes were conserved during evolution through analyzing the gene structures and conserved motifs.A total of 265 NtbHLH genes were localized in the 24 tobacco chromosomes while the remained 44 NtbHLH genes were mapped to the scaffolds due to the complexity of tobacco genome.Moreover,transcripts of NtbHLH genes were obviously tissue-specific expressed from the gene-chip data from 23 tobacco tissues,and expressions of 20 random selected NtbHLH genes were further confirmed by quantitative real-time PCR,indicating their potential functions in the plant growth and development.Importantly,overexpressed NtbHLH86 gene confers improve drought tolerance in tobacco indicating that it might be involved in the regulation of drought stress.Therefore,our findings here provide a valuable information on the characterization of NtbHLH genes and further investigation of their functions in tobacco.
基金the GDAS’Project of Science and Technology Development(No.2020GDASYL-20200103044)Key-Area Research and Development Program of Guangdong(No.2020B1111350002)+1 种基金the National Key R&D Program of China(No.2019YFC1805305)the Project of Water Resource Department of Guangdong Province(No.2017-18).
文摘New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment.Electro-Fenton technology is an effective method to remove PPCPs from water.Novel particle electrodes(MMT/rGO/Fe_(3)O_(4))were synthesized by depositing Fe3O4 nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional electro-Fenton(3D-EF)system.The electrodes combined the catalytic property of Fe3O4,hydrophilicity of montmorillonite and electrical conductivity of graphene oxides,and applied for the degradation of Acyclovir(ACV)with high efficiency and ease of operation.At optimal condition,the degradation rate of ACV reached 100%within 120 min,and the applicable pH range could be 3 to 11 in the 3D-EF system.The stability and reusability of MMT/rGO/Fe_(3)O_(4)particle electrodes were also studied,the removal rate of ACV remained at 92%after 10 cycles,which was just slightly lower than that of the first cycle.Potential degradation mechanisms were also proposed by methanol quenching tests and FT-ICR-MS.
基金supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0480000)the National Key Research and Development Program of China(2022YFA1103800,2022YFA1303100,2023YFE0210100)+10 种基金the National Natural Science Foundation of China(22337005,22377119,32025010,32241002,32270812,32270920,32325016,32350024,32261160376,82150003,82188101,82325016,92157202,92254301,T2325003)STI2030-Major Projects(2021ZD0202501)the Science and Technology Commission of Shanghai Municipality(2019SHZDZX02,20490712600)the Key Research Program CAS(ZDBS-ZRKJZ-TLC003)International Cooperation Program CAS(154144KYSB20200006)CAS Project for Young Scientists in Basic Research(YSBR-075)Guangdong Province Science and Technology Program(2023B1111050005,2023B1212060050)Natural Science Foundation of Anhui Province(2108085J12)Center for Advanced Interdisciplinary Science and Biomedicine of IHM(QYPY20220008)Shenzhen Talent Program(KQTD20210811090115021)Guangdong Innovative and Entrepreneurial Research Team Program(2021ZT09Y104)。
文摘Biomolecular condensates or membraneless organelles(MLOs)formed by liquid-liquid phase separation(LLPS)divide intracellular spaces into discrete compartments for specific functions.Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration,tumorigenesis,and many other pathological processes.Herein,we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation.We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders,hearing loss,cancers,and immunological diseases.Finally,we describe the emerging discovery of chemical modulators of phase separation.
基金supported by the NationalNatural Science Foundation of China(No.31972110)the National Key R&D Program of China(No.2018YFD0401102).
文摘Phytosterols,which are naturally occurring in plants,have excellent nutritional and health values on lowering both the blood cholesterol level and the risk of cardiovascular diseases.Edible oils are the main source of daily intake of phytosterols,whereas the properties of phytosterols may vary a lot depending on their sources.During the processing of edible oil including refining and frying,phytosterol's content fluctuates,which influences the properties of the final product.Phytosterols and their derivatives undergo physical migration between different phases and chemical conversion during the processing,which reduces the quality and the commercial value of edible oils.Therein,the loss of phytosterols is the major concern in the process of neutralization and deodorization.In addition,oxidation and thermal degradation of phytosterols occur simultaneously during frying,which also reduces the content of phytosterols.Nevertheless,the oil matrix has a promoting or an inhibitory effect on the thermal oxidation of phytosterols.Therefore,various efforts have been devoted to analyzing and improving the remaining contents of phytosterols in edible oil.Regardless of the processing method,temperature plays an important role in the loss of phytosterols.At present,themain analysismethods of phytosterols include gas chromatography and liquid chromatography,inwhich the pretreatment of different types of phytosterols is also a crucial step.This review focused on the following topics comprehensively:(i)the distribution of phytosterols in the oil-containing plants and edible oils during the refining processing;(ii)the pretreatment and analysis methods of various phytosterols(free phytosterols,phytosteryl fatty acid esters,phytosteryl glycosides and acylated phytosteryl glycosides);(iii)the variation of phytosterols in process of esterification and oxidation,storage and so on.The study also proposed that the investigation in the loss and safety of phytosterols during processing of the vegetable oils should be proceeded further in combination with efficient and accurate chromatography methods.
基金supported by the National Natural Science Foundation of China(No.31972110)。
文摘Phytosterols have received extensive attention owing to their excellent cholesterol-lowering activity and the role in cardiovascular diseases prevention. However, poor solubility in both oil and water limited the application of free phytosterols in the food industry. Chemical or enzymatic modifications were effective to improve the physicochemical properties as well as the bioavailability and cholesterollowering activity of phytosterols. Higher oil solubility and lower melting point of phytosterols have been achieved by esterification and transesterification with fatty acids and triacylglycerols so as to enhance the bioavailability, reduce formation of precipitates, and improve the sensory quality of products.While the researches on the improvement on its water solubility is a hot topic. Hydrophilic phytosterol derivatives have promising applications in the food industry because most of foods belong to aqueous matrix. Hydrophilic modification is useful and meaningful for phytosterols in both industrial and commercial applications. This review mainly highlights the hydrophilic phytosterol derivatives in the following aspects:(i) hydrophilic modifications of phytosterols by coupling with various polar components;(ii) cholesterol-lowering activity and possible molecular mechanisms of hydrophilic phytosterol derivatives on reducing serum cholesterol level;and(iii) safety evaluation of hydrophilic phytosterol derivatives in cell-culture studies, animal models and clinical trials.
基金supported by National Natural Science Foundation of China(No.21865025)Science and Technology Innovation Talents Program of Bingtuan(No.2019CB025)。
文摘Traditional methods of preparing metal-organic frameworks(MOFs)compounds have the disadvantages such as poor dispersion,inefficient and discontinuous process.In this work,microchannel reactor is used to prepare MOFs-derived zeolite-imidazole material via flash nanoprecipitation to form ZIF-67+PEI(FNP),which reduces the MOF synthesis time down to millisecond time interval while keeping the synthesized ZIF-67+PEI(FNP)highly dispersed.The Co@N–C(FNP)catalyst obtained by flash nanoprecipitation and carbonization has a higher Co content and thus more active sites for oxygen reduction reaction than the Co@N–C(DM)catalyst prepared by direct mixing method.Electrochemical tests show that the Co@N–C(FNP)catalyst prepared by this method has excellent oxygen reduction performance,good methanol resistance and high stability.The onset potential and half-wave potential of Co@N–C(FNP)are 0.92 VRHE and 0.83 VRHE,respectively,which are higher than that of Co@N–C(DM)(Eonset=0.90 VRHEand E1/2=0.83VRHE).Moreover,the Zn-air battery assembled with Co@N–C(FNP)as the cathode catalyst has high open circuit voltage,high power density and large specific capacity.The performance of these batteries has been comparable to that of Pt/C assembled batteries.Density functional theory(DFT)calculations confirm that the Co(220)crystal plane present in Co@N–C(FNP)have stronger adsorption energy than that of Co(111)crystal plane in Co@N–C(DM),leading to better electrocatalytic performance of the former.
基金Supported by National Natural Foundation of China(71173035)Scientifi cand Technological Project in Heilongjiang Province(GC10D206)Cultivation of New Century Excellent Talents in Universities of Heilongjiang Province(1252-NCET-001)
文摘We redefine "green food enterprises" and expound the connotation of "greenification" of food processing industry. Taking the case of Heilongjiang Province, we give an overview of green food enterprises in Heilongjiang Province, and study the degree of "greenification" of food processing industry in Heilongjiang Province, through the case study of related enterprises. There are some problems in the process of pushing forward "greenification" of food processing industry, such as the high cost of production, varying quality of products, weak R & D capability and the distance limitations of raw material places and the consumer market. The following recommendations are put forth for promoting the "greenification" of food enterprises: (i) Reducing the production costs of green food, and improving the "greenification rate"; (ii) Intensifying policy support, and creating a "green" environment; (iii) Strengthening quality control, and improving consumers trust in green food; (iv) Establishing the network of green marketing, and broadening sales channels of green food.
文摘The purpose of this article is to explore the application of perception theory in hotel interior design. Through the analysis of the theory of perception, the article sums up its connection with the interior design of Modern Hotel, and sums up the hotel interior design method under the influence of three factors of visual perception, space-time perception, logical perception so as to improve the level of humanization. Finally it will provide a basis for hotel interior design in the future.
基金supported by grants from China National Science Foundation(Nos.82022048 and 82373121)the Science and Technology Planning Project of Guangzhou(No.202206080013)the National Key Research&Development Program(No.2022YFC2505100)
文摘To the Editor:Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)show significant efficacy in patients with advanced-stage non-small cell lung cancer(NSCLC)with sensitive EGFR mutations and significantly prolong the survival of these patients.However,drug resistance emerges in most patients.Previous studies indicated that cyclin-dependent kinase 4/6(CDK4/6)gene amplification was one of the resistance mechanisms of the EGFR-TKI osimertinib,weakening its efficacy.Treatment options for EGFR-mutant NSCLC patients with CDK4 amplification are limited to add CDK4 inhibitors.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY19H090030)the Science and Technology Innovation 2030-Major Project of Brain Science and Brain-like Research(2021ZD0202501)the Excellent Innovation Program of Hangzhou Municipal University in 2019,and the National Natural Science Foundation of China(82150003,91949104,and 31871022).
文摘tDiabetic neuropathic pain(DNP)is the most common disabling complication of diabetes.Emerging evi-dence has linked the pathogenesis of DNP to the aberrant sprouting of sensory axons into the epidermal area;however,the underlying molecular events remain poorly understood.Here we found that an axon guidance molecule,Netrin-3(Ntn-3),was expressed in the sensory neurons of mouse dorsal root ganglia(DRGs),and downregulation of Ntn-3 expression was highly correlated with the severity of DNP in a diabetic mouse model.Genetic ablation of Ntn-3 increased the intra-epidermal sprouting of sensory axons and worsened the DNP in diabetic mice.In contrast,the elevation of Ntn-3 levels in DRGs significantly inhibited the intra-epidermal axon sprouting and alleviated DNP in diabetic mice.In con-clusion,our studies identified Ntn-3 as an important regula-tor of DNP pathogenesis by gating the aberrant sprouting of sensory axons,indicating that Ntn-3 is a potential druggable target for DNP treatment.
基金supported by grants from the STI2030-Major Projects(2021ZD0202501)the National Natural Science Foundation of China(NSFC)(82150003,91949104,and 31871022)+1 种基金Zhejiang Province NSFC(LY19H090135),the National Institutes of Health(NIH)(R35 GM139627)Open Project from the State Key Laboratory of Genetic Resources and Evolution of China(GREKF20-08).
文摘Dear Editor,Peripheral neuropathy is a group of devastating diseases affecting periphe-ral nerves and may cause symptoms such as extreme numbness,muscle weakness,and paralysis.Currently,there are no effective therapies for these diseases.Great progress has been made in identifying genetic causes for peripheral neuropathy owing to the advances in genetic testing in the last decade.For example,>100 genes have been identified to be associated with Charcot–Marie–Tooth(CMT)neuropathy,a group of disorders among the most common forms of inherited peripheral neuropathy.