期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A focus review on 3D printing of wearable energy storage devices
1
作者 Yuxuan Zhu Jiadong Qin +6 位作者 ge shi Chuang Sun Malaika Ingram Shangshu Qian Jiong Lu Shanqing Zhang Yu Lin Zhong 《Carbon Energy》 SCIE CAS 2022年第6期1242-1261,共20页
Three-dimensional(3D)printing has gained popularity in a variety of applications,particularly in the manufacture of wearable devices.Aided by the large degree of freedom in customizable fabrication,3D printing can cat... Three-dimensional(3D)printing has gained popularity in a variety of applications,particularly in the manufacture of wearable devices.Aided by the large degree of freedom in customizable fabrication,3D printing can cater towards the practical requirements of wearable devices in terms of light weight and flexibility.In particular,this focus review aims to cover the important aspect of wearable energy storage devices(WESDs),which is an essential component of most wearable devices.Herein,the topics discussed are the fundamentals of 3D printing inks used,the optimizing strategies in improving the mechanical and electrochemical properties of wearable devices and the recent developments and challenges of wearable electrochemical systems such as batteries and supercapacitors.It can be expected that,with the development of 3D printing technology,realization of the full potential of WESDs and seamless integration into smart devices also needs further in-depth investigations. 展开更多
关键词 3D printing BATTERIES direct ink writing SUPERCAPACITORS wearable energy storage devices
下载PDF
Defect reduction to enhance the mechanical strength of nanocellulose carbon aerogel
2
作者 Haihong Lai Zehong Chen +9 位作者 Hao Zhuo Yijie Hu Xuan Zhao Jiwang Yi Hongzhi Zheng ge shi Yifan Tong Ling Meng Xinwen Peng Linxin Zhong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期492-498,共7页
Carbon aerogels prepared from renewable nano building blocks are rising-star materials and hold great promise in many fields.However,various defects formed during carbonization at high temperature disfavor the stress ... Carbon aerogels prepared from renewable nano building blocks are rising-star materials and hold great promise in many fields.However,various defects formed during carbonization at high temperature disfavor the stress transfer and thus the fabrication of flexible carbon aerogel from renewable nano building blocks.Herein,a structural defect-reducing strategy is proposed by altering the pyrolysis route of cellulose nanofiber.Inorganic salt that inhibits the generation of tar volatilization during pyrolysis can prevent the formation of various structural defects.Microstructure with fewer defects can reduce stress concentration and remarkably enhance the compressibility of carbon aerogel,thus increasing the maximum stress retention of carbon aerogel.The carbon aerogel also has high stress sensor sensitivity and excellent temperature coefficient of resistance.The structural defect-reducing strategy will pave a new way to fabricate high-strength carbon materials for various fields. 展开更多
关键词 Biomass Cellulose nanofiber PYROLYSIS RENEWABLE Carbon aerogel
原文传递
Impact of Robinia pseudoacacia stand conversion on soil properties and bacterial community composition in Mount Tai,China 被引量:2
3
作者 Kun Li Xu Han +6 位作者 Ruiqiang Ni ge shi Sergio de-Miguel Chuanrong Li Weixing Shen Yikun Zhang Xingzhong Zhang 《Forest Ecosystems》 SCIE CSCD 2021年第2期253-264,共12页
Background:Robinia pseudoacacia is a widely planted pioneer tree species in reforestations on barren mountains in northern China.Because of its nitrogen-fixing ability,it can play a positive role in soil and forest re... Background:Robinia pseudoacacia is a widely planted pioneer tree species in reforestations on barren mountains in northern China.Because of its nitrogen-fixing ability,it can play a positive role in soil and forest restoration.After clearcutting of planted stands,R.pseudoacacia stands become coppice plantations.The impacts of shifting from seedling to coppice stands on soil bacterial community and soil properties have not been wel described.This study aims to quantify how soil properties and bacterial community composition vary between planted seedling versus coppice stands.Methods:Nine 20 m×20 m plots were randomly selected in seedling and coppice stands.The bulk soil and rhizosphere soil were sampled in summer 2017.Bulk soil was sampled at 10 cm from the soil surface using a soil auger.Rhizosphere soil samples were col ected using a brush.The soil samples were transported to the laboratory for chemical analysis,and bacterial community composition and diversity was obtained through DNA extraction,16 S r RNA gene amplification and high-throughput sequencing.Results:The results showed that,compared to seedling plantations,soil quality decreased significantly in coppice stands,but without affecting soil exchangeable Mg^(2+) and K^(+).Total carbon(C)and nitrogen(N)were lower in the rhizosphere than in bulk soil,whereas nutrient availability showed an opposite trend.The conversion from seedling to coppice plantations was also related to significant differences in soil bacterial community structure and to the reduction of soil bacterialα-diversity.Principal component analysis(PCA)showed that bacterial community composition was similar in both bulk and rhizosphere soils in second-generation coppice plantations.Special y,the conversion from seedling to coppice stands increased the relative abundance of Proteobacteria and Rhizobium,but reduced that of Actinobacteria,which may result in a decline of soil nutrient availability.Mantel tests revealed that C,N,soil organic matter(SOM),nitrate nitrogen(NO^(-)+(3)-N)and available phosphorus positively correlated with bacterial community composition,while a variation partition analysis(VPA)showed that NO^(-)+(3)-N explained a relatively greater proportion of bacterial distribution(15.12%),compared with C and SOM.Surprisingly,N showed no relationship with bacterial community composition,which may be related to nitrogen transportation.Conclusions:The conversion from seedling to coppice stands reduced soil quality and led to spatial-temporal homogenization of the soil bacterial community structure in both the rhizosphere and bulk soils.Such imbalance in microbial structure can accelerate the decline of R.pseudoacacia.This may affect the role of R.pseudoacacia coppice stands in soil and forest restoration of barren lands in mountain areas. 展开更多
关键词 Black locust coppice plantation Forest restoration AFFORESTATION Microbial structure Soil nutrient Soil quality
下载PDF
The role of electrolyte acid concentration in the electrochemical exfoliation of graphite:Mechanism and synthesis of electrochemical graphene oxide 被引量:1
4
作者 Sean E.Lowe ge shi +7 位作者 Yubai Zhang Jiadong Qin Lixue Jiang Shuaiyu Jiang Mohammad Al-Mamun Porun Liu Yu Lin Zhong Huijun Zhao 《Nano Materials Science》 CAS 2019年第3期215-223,共9页
Electrochemistry has emerged as a major route for graphene and graphene oxide synthesis from graphite.Anodic graphite oxidation is commonly used with dilute mineral acid or aqueous salt electrolytes.In this system,the... Electrochemistry has emerged as a major route for graphene and graphene oxide synthesis from graphite.Anodic graphite oxidation is commonly used with dilute mineral acid or aqueous salt electrolytes.In this system,the electrolyte acid concentration appears to be a critical parameter.However,the effect of the acid concentration,particularly at low concentrations,is still not fully understood.To address this issue,we used a packed bed electrochemical reactor to synthesize seven different electrochemical graphite oxide(EGO)products in 2–16M sulfuric acid.Detailed XRD,XPS,Raman,conductivity and optical microscopy analysis of the products was carried out.We found dilute acid(<10 M)graphite oxides were less crystalline and less oxidized than those produced in stronger acids.The oxygen evolution reaction at the graphite surface appears to affect the structural changes,oxidation mechanism,and electrochemical corrosion of the anode.EGO conductivity is also strongly affected by the electrolyte’s acidity.We show that well oxidized,yet reasonably conductive,single layer graphene oxide can be produced from 7.1M acid.These results broaden our understanding of graphite electrochemistry and will serve to inform future electrochemical graphene synthesis efforts. 展开更多
关键词 ELECTROCHEMISTRY GRAPHENE GRAPHENE oxide Synthesis EXFOLIATION
下载PDF
Temporal enhanced sentence-level attention model for hashtag recommendation 被引量:2
5
作者 Jun Ma Chong Feng +2 位作者 ge shi Xuewen shi Heyang Huang 《CAAI Transactions on Intelligence Technology》 2018年第2期95-100,共6页
关键词 分类器 数据集 计算机技术 智能技术
下载PDF
Diversity of bacteria in different life stages and their impact on the development and reproduction of Zeugodacus tau(Diptera:Tephritidae) 被引量:3
6
作者 Mdshibly Noman ge shi +1 位作者 Li-Jun Liu Zhi-Hong Li 《Insect Science》 SCIE CAS CSCD 2021年第2期363-376,共14页
Fruit flies usually harbor diverse communities of bacteria in their digestive systems,which are known to play a significant role in their fitness.However,little information is available on Zeugodacus tau,a polyphagous... Fruit flies usually harbor diverse communities of bacteria in their digestive systems,which are known to play a significant role in their fitness.However,little information is available on Zeugodacus tau,a polyphagous pest worldwide.This study reports the first extensive analysis of bacterial communities in different life stages and their effect on the development and reproduction of laboratory-reared Z tan.Cultured bacteria were identified using the conventional method and all bacteria were identified by highthroughput technologies(16S ribosomal RNA gene sequencing of V3-V4 region).A total of six bacterial phyla were identified in larvae,pupae,and male and female adult flies,which were distributed into 14 classes,32 orders,58 families and 96 genera.Proteobacteria was the most represented phylum in all the stages except larvae.Enterobacter,Klebsiella,Providencia,and Pseudomonas were identified by conventional and next-generation sequencing analysis in both male and female adult flies,and Enterobacter was found to be the main genus.After being fed with antibiotics from the first instar larvae,bacterial diversity changed markedly in the adult stage.Untreated flies laid eggs and needed 20 days before oviposition while the treated flies showed ovary development inhibited and were not able to lay eggs,probably due to the alteration of the microbiota.These findings provide the cornerstone for unexplored research on bacterial function in Z tau,which will help to develop an environmentally friendly management technique for this kind of harmful insect. 展开更多
关键词 ANTIBIOTICS bacterial diversity fitness OVIPOSITION symbiotic bacteria Zeugodacus tau
原文传递
Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting
7
作者 Xuan Zhao Zehong Chen +8 位作者 Hao Zhuo Yijie Hu ge shi Bing Wang Haihong Lai Sherif Araby Wenjia Han Xinwen Peng Linxin Zhong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第25期150-158,共9页
Thermoelectric generators(TEGs)have received increasing attention due to their potential to harvest low-grade heat energy(<100℃ )and provide power for the Internet of Things(IoT)and wearable electronic devices.Her... Thermoelectric generators(TEGs)have received increasing attention due to their potential to harvest low-grade heat energy(<100℃ )and provide power for the Internet of Things(IoT)and wearable electronic devices.Herein,a wood-based ordered framework is used to fabricate carbon nanotube/poly(3,4-ethylenedioxythiophene)(CNT/PEDOT)wood aerogel for TEG.The prepared CNT/PEDOT wood aerogel with an anisotropic structure exhibits a low thermal conductivity of 0.17 W m^(−1)K^(−1)and is advantageous to develop a sufficient temperature gradient.Meanwhile,CNT/PEDOT composites effectively decouple the relationship between the Seebeck coefficient and electrical conductivity by energy filtering effect to enhance thermoelectric(TE)output properties.The vertical TEG assembled by the CNT/PEDOT wood aerogels reveals an output power of 1.5μW and a mass-specific power of 15.48μW g^(−1)at a temperature difference of 39.4 K.Moreover,the layered structure renders high compressibility and fatigue resistance.The anisotropic structure,high mechanical performance,and rapid thermoelectric response,enabling the TEG based on CNT/PEDOT wood aerogel offer opportunities for continuous power supply to low-power electronic devices. 展开更多
关键词 WOOD Nano cellulose Energy harvesting Wearable devices Thermoelectric generator
原文传递
Nondestructive determination of the freshness change in bighead carp heads under variable temperatures by using excitation-emission matrix fl uorescence and back-propagation neural networks
8
作者 Ce shi Zengtao Ji +3 位作者 Xinting Yang Zhixin Jia Ruize Dong ge shi 《Journal of Future Foods》 2022年第2期160-166,共7页
This study established back-propagation neural networks(BPNNs)for evaluating the freshness of bighead carp(Hypophthalmichthys nobilis)heads during chilled storage via fluorescence spectroscopy using an excitation-emis... This study established back-propagation neural networks(BPNNs)for evaluating the freshness of bighead carp(Hypophthalmichthys nobilis)heads during chilled storage via fluorescence spectroscopy using an excitation-emission matrix(EEM).The total volatile basic nitrogen(TVB-N)and total aerobic count(TAC)of fish increased obviously during storage at 0,4,8,12,and 16°C,while sensory scores decreased with increasing storage time.The EEM fluorescence intensity was measured,and its change was correlated with the freshness indicators of the samples.Three characteristic components of EEM data were extracted by parallel factor analysis,and two freshness indicators were used to construct the EEM-BPNNs model.The results demonstrated that the relative errors of the EEM-BPNNs model for TVB-N and TAC were less than 14%.This result indicated that the EEM-BPNNs model could determine the freshness of fish in cold chains in a rapid and nondestructive way. 展开更多
关键词 Excitation-emission matrix FRESHNESS Back-propagation neural networks Parallel factor analysis Chilled storage
原文传递
取代基结构对螺旋聚乙炔高效液相色谱手性固定相对映选择性分离性能的影响
9
作者 李悦 史歌 +3 位作者 康舒铭 曾华 张洁 宛新华 《高分子学报》 SCIE CAS CSCD 北大核心 2023年第5期612-621,共10页
基于(S)-2-乙炔基吡咯烷、炔丙胺和炔丙醇合成了5种乙炔基单体——(S)-N-对氯苯基氨基甲酰基-2-乙炔基吡咯烷(Ⅰ)、(S)-N-对氯苯甲酰基-2-乙炔基吡咯烷(Ⅱ)、N-对氯苯基-N'-炔丙基脲(Ⅲ)、N-炔丙基氨基甲酸对氯苯酯(Ⅳ)和N-对氯苯... 基于(S)-2-乙炔基吡咯烷、炔丙胺和炔丙醇合成了5种乙炔基单体——(S)-N-对氯苯基氨基甲酰基-2-乙炔基吡咯烷(Ⅰ)、(S)-N-对氯苯甲酰基-2-乙炔基吡咯烷(Ⅱ)、N-对氯苯基-N'-炔丙基脲(Ⅲ)、N-炔丙基氨基甲酸对氯苯酯(Ⅳ)和N-对氯苯基氨基甲酸炔丙酯(Ⅴ);通过Rh(nbd)BPh_(4)催化的配位共聚合反应制备了单体I分别与单体Ⅱ~V构成的光学活性螺旋共聚物——Ⅰ_(50)-ran-Ⅱ_(50)、Ⅰ_(80)-ran-Ⅱ_(20)、Ⅰ_(95)-ran-Ⅲ_(5)、Ⅰ_(95)-ran-Ⅳ_(5)和Ⅰ_(95)-ran-Ⅴ_(5).研究了共聚物的结构和组成对旋光性质的影响,并用高效液相色谱评估了其作为涂敷型手性固定相对9种标准底物的对映选择性分离性能.研究结果表明,Ⅰ_(80)-ran-Ⅱ_(20)的光学活性最佳,表现出优于其他共聚物的手性识别性能,对安息香(α=1.40)与乙酰丙酮钴(α=1.88)展现出良好的分离能力.手性单体Ⅱ的引入对共聚物主链螺旋手性的影响较小,但明显干扰侧基的不对称有序排列,降低对映选择性分离性能;不论连接基团的结构和方向,非手性炔丙基单体的引入都显著降低共聚物的光学活性和对映选择性分离性能. 展开更多
关键词 螺旋聚乙炔 手性固定相 取代基结构 高效液相色谱 对映选择性分离
原文传递
Recent progress and future perspectives of flexible metal‐air batteries 被引量:2
10
作者 Tingzhen Li Xinwen Peng +17 位作者 Peng Cui ge shi Wu Yang Zehong Chen Yongfa Huang Yongkang Chen Jinyuan Peng Ren Zou Xiaoyan Zeng Jian Yu Jianyun Gan Zhiyuan Mu Yuling Chen Jiaming Zeng Juan Liu Yunyi Yang Yujia Wei Jun Lu 《SmartMat》 2021年第4期519-553,共35页
With the rapid development of wearable and intelligent flexible electronic devices(FEDs),the demand for flexible energy storage/conversion devices(ESCDs)has also increased.Rechargeable flexible metal‐air batteries(MA... With the rapid development of wearable and intelligent flexible electronic devices(FEDs),the demand for flexible energy storage/conversion devices(ESCDs)has also increased.Rechargeable flexible metal‐air batteries(MABs)are expected to be one of the most ideal ESCDs due to their high theoretical energy density,cost advantage,and strong deformation adaptability.With the improvement of the device design,material assemblies,and manufacturing technology,the research on the electrochemical performance of flexible MABs has made significant progress.However,achieving the high mechanical flexibility,high safety,and wearable comfortability required by FEDs while maintaining the high performance of flexible MABs are still a daunting challenge.In this review,flexible Zn‐air and Li‐air batteries are mainly exemplified to describe the most recent progress and challenges of flexible MABs.We start with an overview of the structure and configuration of the flexible MABs and discuss their impact on battery performance and function.Then it focuses on the research progress of flexible metal anodes,gel polymer electrolytes,and air cathodes.Finally,the main challenges and future research perspectives involving flexible MABs for FEDs are proposed. 展开更多
关键词 air cathode flexible electronic device flexible metal‐air battery gel polymer electrolytes metal anode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部