Nuclear astrophysics is a rapidly developing interdisciplinary feld of research that has received extensive attention from the scientifc community since the midtwentieth century.Broadly,it uses the laws of extremely s...Nuclear astrophysics is a rapidly developing interdisciplinary feld of research that has received extensive attention from the scientifc community since the midtwentieth century.Broadly,it uses the laws of extremely small atomic nuclei to explain the evolution of the universe.Owing to the complexity of nucleosynthesis processes and our limited understanding of nuclear physics in astrophysical environments,several critical astrophysical problems remain unsolved.To achieve a better understanding of astrophysics,it is necessary to measure the cross sections of key nuclear reactions with the precision required by astrophysical models.Direct measurement of nuclear reaction cross sections is an important method of investigating how nuclear reactions infuence stellar evolution.Given the challenges involved in measuring the extremely low crosssections of nuclear reactions in the Gamow peak and preparing radioactive targets,indirect methods,such as the transfer reaction,coulomb dissociation,and surrogate ratio methods,have been developed over the past several decades.These are powerful tools in the investigation of,for example,neutron-capture(n,r)reactions with short-lived radioactive isotopes.However,direct measurement is still preferable,such as in the case of reactions involving light and stable nuclei.As an essential part of stellar evolution,these low-energy stable nuclear reactions have been of particular interest in recent years.To overcome the diffculties in measurements near or deeply within the Gamow window,the combination of an underground laboratory and high-exposure accelerator/detector complex is currently the optimal solution.Therefore,underground experiments have emerged as a new and promising direction of research.In addition,to better simulate the stellar environment in the laboratory,research on nuclear physics under laser-driven plasma conditions has gradually become a frontier hotspot.In recent years,the CIAE team conducted a series of distinctive nuclear astrophysics studies,relying on the Jinping Underground Nuclear Astrophysics platform and accelerators in Earth’s surface laboratories,including the Beijing Radioactive Ion beam Facility,as well as other scientifc platforms at home and abroad.This research covered nuclear theories,numerical models,direct measurements,indirect measurements,and other novel approaches,achieving great interdisciplinary research results,with high-level academic publications and signifcant international impacts.This article reviews the above research and predicts future developments.展开更多
The neutron-rich nuclei near doubly magic132^(Sn)have attracted considerable interest in both nuclear physics and nuclear astrophysics.For the particle-hole nuclei in this region,the low-lying and high core excitation...The neutron-rich nuclei near doubly magic132^(Sn)have attracted considerable interest in both nuclear physics and nuclear astrophysics.For the particle-hole nuclei in this region,the low-lying and high core excitations have been well described by shell model calculations using the extended pairing plus multipole-multipole force model.However,there is a significant difference between experiment and theory in the high-spin level 17+of^(132)Te.We intend to illustrate this difference through monopole interactions.For this purpose,the monopole corrections betweenπ(ν)0g_(7/2),ν1d_(5/2)andπ(ν)0h_(11/2)are investigated in^(132-134)Te,^(131-133)Sb,and^(130)Sn.Some theoretical levels are connected to the(17^(+))state of^(132)Te with the monopole correction(Mc)of Mc(νd_(5/2),νh_(11/2))and the quadruple-quadruple force between the proton and neutron,i.e.,levels 3^(-)(8^(-))in^(130)Sn,level 14^(-)in^(132)Te,and level 23/2^(-)in^(131)Sb.Their observations at lower energies can confirm the datum of level(17^(+))in^(132)Te with an illustration of monopole effects and quadruple-quadruple force.展开更多
基金National Natural Science Foundation of China(Nos.12435010)National Key R&D Program of China(No.2022YFA1602301)。
文摘Nuclear astrophysics is a rapidly developing interdisciplinary feld of research that has received extensive attention from the scientifc community since the midtwentieth century.Broadly,it uses the laws of extremely small atomic nuclei to explain the evolution of the universe.Owing to the complexity of nucleosynthesis processes and our limited understanding of nuclear physics in astrophysical environments,several critical astrophysical problems remain unsolved.To achieve a better understanding of astrophysics,it is necessary to measure the cross sections of key nuclear reactions with the precision required by astrophysical models.Direct measurement of nuclear reaction cross sections is an important method of investigating how nuclear reactions infuence stellar evolution.Given the challenges involved in measuring the extremely low crosssections of nuclear reactions in the Gamow peak and preparing radioactive targets,indirect methods,such as the transfer reaction,coulomb dissociation,and surrogate ratio methods,have been developed over the past several decades.These are powerful tools in the investigation of,for example,neutron-capture(n,r)reactions with short-lived radioactive isotopes.However,direct measurement is still preferable,such as in the case of reactions involving light and stable nuclei.As an essential part of stellar evolution,these low-energy stable nuclear reactions have been of particular interest in recent years.To overcome the diffculties in measurements near or deeply within the Gamow window,the combination of an underground laboratory and high-exposure accelerator/detector complex is currently the optimal solution.Therefore,underground experiments have emerged as a new and promising direction of research.In addition,to better simulate the stellar environment in the laboratory,research on nuclear physics under laser-driven plasma conditions has gradually become a frontier hotspot.In recent years,the CIAE team conducted a series of distinctive nuclear astrophysics studies,relying on the Jinping Underground Nuclear Astrophysics platform and accelerators in Earth’s surface laboratories,including the Beijing Radioactive Ion beam Facility,as well as other scientifc platforms at home and abroad.This research covered nuclear theories,numerical models,direct measurements,indirect measurements,and other novel approaches,achieving great interdisciplinary research results,with high-level academic publications and signifcant international impacts.This article reviews the above research and predicts future developments.
基金Research at ZSTU and CIAE is supported by the National Natural Science Foundation of China(U2267205,12275361)Research at SJTU is supported by the China and Germany Postdoctoral Exchange Fellowship Program 2019 from the Office of China Postdoctoral Council(20191024)
文摘The neutron-rich nuclei near doubly magic132^(Sn)have attracted considerable interest in both nuclear physics and nuclear astrophysics.For the particle-hole nuclei in this region,the low-lying and high core excitations have been well described by shell model calculations using the extended pairing plus multipole-multipole force model.However,there is a significant difference between experiment and theory in the high-spin level 17+of^(132)Te.We intend to illustrate this difference through monopole interactions.For this purpose,the monopole corrections betweenπ(ν)0g_(7/2),ν1d_(5/2)andπ(ν)0h_(11/2)are investigated in^(132-134)Te,^(131-133)Sb,and^(130)Sn.Some theoretical levels are connected to the(17^(+))state of^(132)Te with the monopole correction(Mc)of Mc(νd_(5/2),νh_(11/2))and the quadruple-quadruple force between the proton and neutron,i.e.,levels 3^(-)(8^(-))in^(130)Sn,level 14^(-)in^(132)Te,and level 23/2^(-)in^(131)Sb.Their observations at lower energies can confirm the datum of level(17^(+))in^(132)Te with an illustration of monopole effects and quadruple-quadruple force.