OBJECTIVE: In China, people have relied on traditional Chinese medicine (TCM) for thousands of years to keep healthy and treat diseases. TCM also plays an important role in military health services and now forms a ...OBJECTIVE: In China, people have relied on traditional Chinese medicine (TCM) for thousands of years to keep healthy and treat diseases. TCM also plays an important role in military health services and now forms a new discipline called military Chinese medicine (MCM). However, the type, quality and focus of research articles about MCM have not been reported. The present study was performed to analyze the growing trends of MCM and investigate China's contribution to military health services. METHODS: China's MCM publications were retrieved from the PubMed database, as well as China Nationa~ Knowledge Infrastructure, Wanfang Data and Chongqing VIP database from 2005 to 2014. RESULTS: The study found that the number of published articles increased markedly from 2005 to 2014 Basic research studies comprised a small percentage of the literature. Among these studies, military training injury and special military environmental medicine were the most common research subjects in MCM. Military hospitals were the main institutions generating MCM literature. CONCLUSION: The quality of MCM research is generally low, as indicated by the proportion of publications in core journals. Studies on MCM still lack high-quality publications and internationa cooperation.展开更多
A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside c...A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside coupled spiral Marchand balance-to-unbalance (balun) with magnitude and phase imbalance compensation is used in the mixer to transform local oscillation (LO) signal from single to differential mode. The results showed that the SHPRM achieves the conversion gain of -15- -12.5 dB at fixed fIF=0.5 GHz with 8 dBm LO input power for the radio frequency (RF) bandwidth of 28 35 GHz. The in-band LO-intermediate freqency (IF), RF-IF, and LO-RF isolations are better than 31, 34, and 36 dB, respectively. Besides, the 2LO-IF and 2LO-RF isolations are better than 60 and 45 dB, respectively. The measured input referred PIdB and 3rd-order inter-modulation intercept point (IIP3) are 0.5 and 10.5 dBm, respectively. The measurement is performed under a gate bias voltage as low as 0.1 V and the whole chip only occupies an area of 0.33 mm^2 including pads.展开更多
We present a 31–45.5 GHz injection-locked frequency divider(ILFD) implemented in a standard 90-nm CMOS process. To reduce parasitic capacitance and increase the operating frequency, an NMOS-only cross-coupled pair is...We present a 31–45.5 GHz injection-locked frequency divider(ILFD) implemented in a standard 90-nm CMOS process. To reduce parasitic capacitance and increase the operating frequency, an NMOS-only cross-coupled pair is adopted to provide negative resistance. Acting as an adjustable resistor, an NMOS transistor with a tunable gate bias voltage is connected to the differential output terminals for locking range extension. Measurements show that the designed ILFD can be fully functional in a wide locking range and provides a good figure-of-merit. Under a 1 V tunable bias voltage, the self-resonant frequency of the divider is 19.11 GHz and the maximum locking range is 37.7% at 38.5 GHz with an input power of 0 d Bm. The power consumption is 2.88 m W under a supply voltage of 1.2 V. The size of the chip including the pads is 0.62 mm×0.42 mm.展开更多
基金supported from Three-year Traditional Chinese Medicine Development Foundation of Shanghai (No.ZY3-CCCX-3-7002)
文摘OBJECTIVE: In China, people have relied on traditional Chinese medicine (TCM) for thousands of years to keep healthy and treat diseases. TCM also plays an important role in military health services and now forms a new discipline called military Chinese medicine (MCM). However, the type, quality and focus of research articles about MCM have not been reported. The present study was performed to analyze the growing trends of MCM and investigate China's contribution to military health services. METHODS: China's MCM publications were retrieved from the PubMed database, as well as China Nationa~ Knowledge Infrastructure, Wanfang Data and Chongqing VIP database from 2005 to 2014. RESULTS: The study found that the number of published articles increased markedly from 2005 to 2014 Basic research studies comprised a small percentage of the literature. Among these studies, military training injury and special military environmental medicine were the most common research subjects in MCM. Military hospitals were the main institutions generating MCM literature. CONCLUSION: The quality of MCM research is generally low, as indicated by the proportion of publications in core journals. Studies on MCM still lack high-quality publications and internationa cooperation.
基金Project supported by the National Basic Research Program (973) of China (No. 2010CB327404)the National High-Tech R&D Program (863) of China (No. 2011AA10305)the National Natural Science Foundation of China (No. 60901012)
文摘A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside coupled spiral Marchand balance-to-unbalance (balun) with magnitude and phase imbalance compensation is used in the mixer to transform local oscillation (LO) signal from single to differential mode. The results showed that the SHPRM achieves the conversion gain of -15- -12.5 dB at fixed fIF=0.5 GHz with 8 dBm LO input power for the radio frequency (RF) bandwidth of 28 35 GHz. The in-band LO-intermediate freqency (IF), RF-IF, and LO-RF isolations are better than 31, 34, and 36 dB, respectively. Besides, the 2LO-IF and 2LO-RF isolations are better than 60 and 45 dB, respectively. The measured input referred PIdB and 3rd-order inter-modulation intercept point (IIP3) are 0.5 and 10.5 dBm, respectively. The measurement is performed under a gate bias voltage as low as 0.1 V and the whole chip only occupies an area of 0.33 mm^2 including pads.
基金Project supported by the National Basic Research Program(973)of China(No.2010CB327404)the National High-Tech R&D Program(863)of China(No.2011AA10305)the National Natural Science Foundation of China(Nos.60901012 and 61106024)
文摘We present a 31–45.5 GHz injection-locked frequency divider(ILFD) implemented in a standard 90-nm CMOS process. To reduce parasitic capacitance and increase the operating frequency, an NMOS-only cross-coupled pair is adopted to provide negative resistance. Acting as an adjustable resistor, an NMOS transistor with a tunable gate bias voltage is connected to the differential output terminals for locking range extension. Measurements show that the designed ILFD can be fully functional in a wide locking range and provides a good figure-of-merit. Under a 1 V tunable bias voltage, the self-resonant frequency of the divider is 19.11 GHz and the maximum locking range is 37.7% at 38.5 GHz with an input power of 0 d Bm. The power consumption is 2.88 m W under a supply voltage of 1.2 V. The size of the chip including the pads is 0.62 mm×0.42 mm.