Objective: To evaluate the anti-stress activity of standardized extract of Fumaria indica (FI) through validated beha-vioral models of rodents followed by estimation of biochemical changes associated with chronic stre...Objective: To evaluate the anti-stress activity of standardized extract of Fumaria indica (FI) through validated beha-vioral models of rodents followed by estimation of biochemical changes associated with chronic stress. Methods: Fifty percent ethanolic extract of FI used in this study was standardized on its contents of fumaric acid and its conjugates (0.45% and 0.35% respectively). Stressed Charles Foster rats received unpredictable foot shocks (2 mA, 1 hr, 14 days) through electric grid. FI was given orally as 0.3% carboxymethyl cellulose (CMC) suspension in 100, 200 and 400 mg/kg doses. For comparison, Panax ginseng (PG) extract (100 mg/kg, p.o.) was used as standard adaptogen. Incidence of gastric ulceration, changes in weight of adrenal and spleen, behavioral depression, cognitive dysfunction test and suppression of sexual behavior in male rats were used as validated behavioral models. Plasma corticosterone, brain levels of lipid peroxides (LPO), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH), and expression of cytokines IL-1β, TNF-α and IL-10 in circulating white blood cells (WBC) were quantified for ascertaining biochemical changes accompanying stress. Results: As compared to vehicle treated stressed rats, the FI and PG treated rats showed fewer incidence of gastric ulceration, reversal of changes in weight of adrenal gland and spleen, reversal of behavioral depression, better performance in passive and active avoidance tests for cognitive function and increased sexual activity. FI and PG significantly decreased chronic unpredictable stress induced elevation of corticosterone, and both extracts normalized also the abnormal oxidative status of the brain observed in stressed rats. FI treatment also suppressed the elevated level of IL-1β, TNF-α and IL-10 in stressed animals. Conclusions: FI could be another adaptogenic herb and fumaric acid and its conjugates are possibly involved in observed bioactivity of its extract.展开更多
文摘Objective: To evaluate the anti-stress activity of standardized extract of Fumaria indica (FI) through validated beha-vioral models of rodents followed by estimation of biochemical changes associated with chronic stress. Methods: Fifty percent ethanolic extract of FI used in this study was standardized on its contents of fumaric acid and its conjugates (0.45% and 0.35% respectively). Stressed Charles Foster rats received unpredictable foot shocks (2 mA, 1 hr, 14 days) through electric grid. FI was given orally as 0.3% carboxymethyl cellulose (CMC) suspension in 100, 200 and 400 mg/kg doses. For comparison, Panax ginseng (PG) extract (100 mg/kg, p.o.) was used as standard adaptogen. Incidence of gastric ulceration, changes in weight of adrenal and spleen, behavioral depression, cognitive dysfunction test and suppression of sexual behavior in male rats were used as validated behavioral models. Plasma corticosterone, brain levels of lipid peroxides (LPO), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH), and expression of cytokines IL-1β, TNF-α and IL-10 in circulating white blood cells (WBC) were quantified for ascertaining biochemical changes accompanying stress. Results: As compared to vehicle treated stressed rats, the FI and PG treated rats showed fewer incidence of gastric ulceration, reversal of changes in weight of adrenal gland and spleen, reversal of behavioral depression, better performance in passive and active avoidance tests for cognitive function and increased sexual activity. FI and PG significantly decreased chronic unpredictable stress induced elevation of corticosterone, and both extracts normalized also the abnormal oxidative status of the brain observed in stressed rats. FI treatment also suppressed the elevated level of IL-1β, TNF-α and IL-10 in stressed animals. Conclusions: FI could be another adaptogenic herb and fumaric acid and its conjugates are possibly involved in observed bioactivity of its extract.