The transport properties of artificially engineered superlattices (SLs) can be tailored by incorporating a high density of interfaces in them. Specifically, SiGe SLs with low thermal conductivity values have great p...The transport properties of artificially engineered superlattices (SLs) can be tailored by incorporating a high density of interfaces in them. Specifically, SiGe SLs with low thermal conductivity values have great potential for thermoelectric generation and nano-cooling of Si-based devices. Here, we present a novel approach for customizing thermal transport across nanostructures by fabricating Si/Sil-xGex SLs with well-defined compositional gradients across the SiGe layer from x = 0 to 0.60. We demonstrate that the spatial inhomogeneity of the structure has a remarkable effect on the heat-flow propagation, reducing the thermal conductivity to -2.2 W.m-1.K-1, which is significantly less than the values achieved previously with non-optimized long-period SLs. This approach offers further possibilities for future applications in thermoelectricity.展开更多
文摘The transport properties of artificially engineered superlattices (SLs) can be tailored by incorporating a high density of interfaces in them. Specifically, SiGe SLs with low thermal conductivity values have great potential for thermoelectric generation and nano-cooling of Si-based devices. Here, we present a novel approach for customizing thermal transport across nanostructures by fabricating Si/Sil-xGex SLs with well-defined compositional gradients across the SiGe layer from x = 0 to 0.60. We demonstrate that the spatial inhomogeneity of the structure has a remarkable effect on the heat-flow propagation, reducing the thermal conductivity to -2.2 W.m-1.K-1, which is significantly less than the values achieved previously with non-optimized long-period SLs. This approach offers further possibilities for future applications in thermoelectricity.