We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data.Using the characteristic decomposition method propos...We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data.Using the characteristic decomposition method proposed by Li et al.(Commun Math Phys 267:1–12,2006),we derive a group of characteristic decompositions for the system.Using these characteristic decompositions,we find a sufficient condition on the initial data to ensure the existence of global-in-time classical solutions.展开更多
In order to construct global solutions to two-dimensional(2 D for short)Riemann problems for nonlinear hyperbolic systems of conservation laws,it is important to study various types of wave interactions.This paper dea...In order to construct global solutions to two-dimensional(2 D for short)Riemann problems for nonlinear hyperbolic systems of conservation laws,it is important to study various types of wave interactions.This paper deals with two types of wave interactions for a 2 D nonlinear wave system with a nonconvex equation of state:Rarefaction wave interaction and shock-rarefaction composite wave interaction.In order to construct solutions to these wave interactions,the authors consider two types of Goursat problems,including standard Goursat problem and discontinuous Goursat problem,for a 2 D selfsimilar nonlinear wave system.Global classical solutions to these Goursat problems are obtained by the method of characteristics.The solutions constructed in the paper may be used as building blocks of solutions of 2 D Riemann problems.展开更多
基金supported by the National Natural Science Foundation of China(12071278).
文摘We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data.Using the characteristic decomposition method proposed by Li et al.(Commun Math Phys 267:1–12,2006),we derive a group of characteristic decompositions for the system.Using these characteristic decompositions,we find a sufficient condition on the initial data to ensure the existence of global-in-time classical solutions.
基金supported by the National Natural Science Foundation of China(No.11301326)。
文摘In order to construct global solutions to two-dimensional(2 D for short)Riemann problems for nonlinear hyperbolic systems of conservation laws,it is important to study various types of wave interactions.This paper deals with two types of wave interactions for a 2 D nonlinear wave system with a nonconvex equation of state:Rarefaction wave interaction and shock-rarefaction composite wave interaction.In order to construct solutions to these wave interactions,the authors consider two types of Goursat problems,including standard Goursat problem and discontinuous Goursat problem,for a 2 D selfsimilar nonlinear wave system.Global classical solutions to these Goursat problems are obtained by the method of characteristics.The solutions constructed in the paper may be used as building blocks of solutions of 2 D Riemann problems.