It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals ex...It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.展开更多
Background:Triple-negative breast cancer(TNBC)is a heterogeneous,recurring cancer characterized by a high rate of metastasis,poor prognosis,and lack of efficient therapies.KBU2046,a small molecule inhibitor,can inhibi...Background:Triple-negative breast cancer(TNBC)is a heterogeneous,recurring cancer characterized by a high rate of metastasis,poor prognosis,and lack of efficient therapies.KBU2046,a small molecule inhibitor,can inhibit cell motility in malignant tumors,including breast cancer.However,the specific targets and the corresponding mechanism of its function remain unclear.Methods:In this study,we employed(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium)(MTS)assay and transwell assay to investigate the impact of KBU2046 on the proliferation and migration of TNBC cells in vitro.RNA-Seq was used to explore the targets of KBU2046 that inhibit the motility of TNBC.Finally,confirmed the predicted important signaling pathways through RT-qPCR and western blotting.Results:In this study,we found that KBU2046 functioned as a novel transforming growth factor-β(TGF-β1)inhibitor,effectively suppressing tumor cell motility in vitro.Mechanistically,it directly down-regulated leucine-rich repeat-containing 8 family,member E(LRRC8E),latent TGFβ-binding protein 3(LTBP3),dynein light chain 1(DNAL1),and MAF family of bZIP transcription factors(MAFF)genes,along with reduced protein expression of the integrin family.Additionally,KBU2046 decreased phosphorylation levels of Raf and ERK.This deactivation of the ERK signaling pathway impeded cancer invasion and metastasis.Conclusions:In summary,these findings advocate for the utilization of TGF-β1 as a diagnostic and prognostic biomarker and as a therapeutic target in TNBC.Furthermore,our data underscore the potential of KBU2046 as a novel therapeutic strategy for combating cancer metastasis.展开更多
In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple e...In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.展开更多
Background:Regulatory proteins involved in human cellular division and proliferation,cyclin-dependent kinases 4 and 6(CDK4/6)are overexpressed in numerous cancers,including triple-negative breast cancer(TNBC).TNBC is ...Background:Regulatory proteins involved in human cellular division and proliferation,cyclin-dependent kinases 4 and 6(CDK4/6)are overexpressed in numerous cancers,including triple-negative breast cancer(TNBC).TNBC is a common pathological subtype of breast cancer that is prone to recurrence and metastasis,and has a single treatment method.As one of the CDK4/6 inhibitors,abemaciclib can effectively inhibit the growth of breast tumors.In this study,we synthesized LA-D-B1,a derivative of Abemaciclib,and investigated its anti-tumor effects in breast cancer.Methods:Cellular viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay.Cell cloning and migration abilities were determined by colony formation assay and wound healing assay.Cell invasion abilities and adhesion were determined by cell invasion assay and cell adhesion assay.The impact of compound LA-D-B1 on cell proliferation and the cell cycle was analyzed through Western blotting,which quantified the levels of proteins associated with the cyclin-dependent kinase(CDK)4/6-cyclin D-Rb-E2F pathway.The in vivo anti-tumor activity of compound LA-D-B1 was investigated using a chick chorioallantoic membrane(CAM)model.Results:The study demonstrated that LA-D-B1 effectively suppressed breast cancer cell proliferation,induced apoptosis,and caused cell cycle arrest.Furthermore,LA-D-B1 reduced the expression of key proteins in the CDK4/6-cyclin D-Rb-E2F pathway,including CDK4,CDK6 and E2F1.The results also indicated significant antitumor activity of LA-D-B1 in a transplanted tumor model.Conclusion:In this study,LA-D-B1 demonstrated a potent anti-tumor effect by effectively suppressing cell proliferation and inhibiting cell cycle progression in breast cancer.These findings highlight the potential of LA-D-B1 as a valuable compound for enhancing therapeutic outcomes and controlling the progression of breast cancer.展开更多
Global navigation satellite system(GNSS)technique has irreplaceable advantages in the continuous monitoring of surface deformation.Reducing noise to improve the signal-to-noise ratio(SNR)and extract the concerned sign...Global navigation satellite system(GNSS)technique has irreplaceable advantages in the continuous monitoring of surface deformation.Reducing noise to improve the signal-to-noise ratio(SNR)and extract the concerned signals is of great significance.As an improved algorithm of empirical mode decomposition(EMD),complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)algorithm has better signal processing ability.Using the CEEMDAN algorithm,the height time series of 29GNSS stations in Chinese mainland were analyzed,and good denoising effects and extraction from periodic signals were achieved.The numerical results showed that the annual signal obtained with the CEEMDAN algorithm was significantly based on Lomb_Scargle spectrum analysis,and large differences in the long-term signals were found between the stations at different locations in Chinese mainland.With respect to data denoising,compared with the EMD and wavelet denoising algorithms,the CEEMDAN algorithm respectively improved the SNR by 29.35% and 36.54%,increased the correlation coefficient by 8.67% and 11.96%,and reduced root mean square error(RMSE)by 44.68% and 43.48%,indicating that the CEEMDAN algorithm had better denoising behavior than the other two algorithms.In addition,the results demonstrated that different denoising methods had little influence on estimating the annual vertical deformation velocity.The extraction of periodic signals showed that more components were retained by using the CEEMDAN algorithm than the EMD algorithm,which indicated that the CEEMDAN algorithm had advantages over frequency aliasing.In conclusion,the CEEMDAN algorithm was recommended for processing the GNSS height time series to analyze the vertical deformation due to its excellent features of denoising and the extraction of periodic signals.展开更多
The multiphase flow characteristic is one of the most concerning problems during solid fluidization exploitation of marine natural gas hydrate reservoirs.In this research,a new transient gas-liquid-solid multiphase fl...The multiphase flow characteristic is one of the most concerning problems during solid fluidization exploitation of marine natural gas hydrate reservoirs.In this research,a new transient gas-liquid-solid multiphase flow model with hydrate phase transition was developed.Meanwhile,this model considered the coupling relationship among convective heat transfer,hydrate dynamic decomposition,and multi-phase flow.The model can simulate the change of flow pattern from solid-liquid to gas-liquid-solid flow,and describe the distribution character of volume fraction of phase,wellbore temperature and pressure,and hydrate decomposition rate during transportation.The simulation results indicate that the hydrate decomposition region in the wellbore gradually expands,but the hydrate decomposition rate gradually decreases during the solid fluidization exploitation of hydrate.When mining time lasts for 4 h,and the bottom hole pressure decreases by about 0.4 MPa.Increasing NaCl concentration in seawater helps expand hydrate decomposition regions and improves the wellbore hydrate decomposition rate.When the Nacl mass fraction in seawater reaches 15%,it will raise the hydrate decomposition regions to the whole wellbore.In addition,the higher the wellhead backpressure,the lower the decomposition area and decomposition rate of hydrate in the wellbore.When wellhead backpressure reaches 2 MPa,the volume fraction of gas near the wellhead will reduce to about 12%.This work is expected to provide a theoretical basis for the development of marine hydrate reservoirs.展开更多
For networking of big data applications,an essential issue is how to represent networks in vector space for further mining and analysis tasks,e.g.,node classification,clustering,link prediction,and visualization.Most ...For networking of big data applications,an essential issue is how to represent networks in vector space for further mining and analysis tasks,e.g.,node classification,clustering,link prediction,and visualization.Most existing studies on this subject mainly concentrate on monoplex networks considering a single type of relation among nodes.However,numerous real-world networks are naturally composed of multiple layers with different relation types;such a network is called a multiplex network.The majority of existing multiplex network embedding methods either overlook node attributes,resort to node labels for training,or underutilize underlying information shared across multiple layers.In this paper,we propose Multiplex Network Infomax(MNI),an unsupervised embedding framework to represent information of multiple layers into a unified embedding space.To be more specific,we aim to maximize the mutual information between the unified embedding and node embeddings of each layer.On the basis of this framework,we present an unsupervised network embedding method for attributed multiplex networks.Experimental results show that our method achieves competitive performance on not only node-related tasks,such as node classification,clustering,and similarity search,but also a typical edge-related task,i.e.,link prediction,at times even outperforming relevant supervised methods,despite that MNI is fully unsupervised.展开更多
The purpose of this paper is to study the critical sand starting velocity and transformation law of flow pattern based on gas-water-sand three-phase flow in an inclined pipe.Firstly,the indoor simulation experiment sy...The purpose of this paper is to study the critical sand starting velocity and transformation law of flow pattern based on gas-water-sand three-phase flow in an inclined pipe.Firstly,the indoor simulation experiment system of gas-water-sand three-phase flow was used to test the conversion law of flow pattern based upon the different gas void fraction.Secondly,the influence of slug bubbles on sand migration was investigated according to distinctive hole deviation angles,gas void fraction and sand concentration.Finally,the critical sand starting velocity was tested based on dissimilar hole deviation angles,gas void fraction,sand concentration and sand particle size,and then the influence of the abovementioned key parameters on the sand starting velocity was debated based on the force analysis of the sand particles.The experimental results illustrated that when the gas void fraction was less than 5%,it was bubbly flow.When it increased from 5%to 30%,the bubbly flow and slug flow coexisted.When it was between 30%and 50%,the slug flow and agitated flow coexisted.When it reached 50%,it was agitated flow.Providing that the hole deviation angle was 90°,the phenomenon of overall migration and wavelike migration on the surface of sand bed was observed.On the contrary,the phenomenon of rolling and jumping migration was recognized.The critical sand starting velocity was positively correlated with the hole deviation angle and sand particle size,but negatively associated with the gas void fraction and sand concentration.This research can provide a certain reference for sand-starting production in the field of petroleum engineering.展开更多
During deepwater managed pressure drilling(MPD),the gas kick may occur in abnormally high-pressure formations.If the traditional well control method is adopted,the treatment time is long and the advantage of early gas...During deepwater managed pressure drilling(MPD),the gas kick may occur in abnormally high-pressure formations.If the traditional well control method is adopted,the treatment time is long and the advantage of early gas kick detection of MPD is lost.The dynamic managed pressure well-control(MPWC)method can be used to rapidly treat gas kick in deepwater MPD.In this paper,considering the effect of large-variable-diameter annulus and complex wellbore temperature in deepwater drilling,a simplified model of non-isothermal gas-liquid two-phase flow was established for dynamic deepwater MPWC simulation.Using this model,the response characteristics of outlet flow and wellhead backpressure were investigated.The results indicated that the gas fraction,outlet liquid flow rate,pit gain and wellhead backpressure presented complex alternating characteristics when gas moved upwards in the wellbore due to the large-variable-diameter annulus.The outlet liquid flow rate would be lower than the inlet flow rate and the pit gain would decrease before the gas moved to the wellhead.The variation trend of the wellhead backpressure was consistent with that of the pit gain.When the gas-liquid mixture passed through the choke,the expansion or compression of the gas caused part of the choke pressure drop to be supplemented or unloaded,delaying the response rate of the wellhead backpressure.The wellbore temperature,borehole diameter and seawater depth had different effects on outlet flow rate,pit gain and wellhead backpressure.This research could provide a new idea for well control methods in deepwater managed pressure drilling.展开更多
When a laser is transmitted in fog, and the water droplets will scatter and absorb the laser, which affects the intensity of the laser transmission and the accuracy of radar detection. Therefore, it is of great signif...When a laser is transmitted in fog, and the water droplets will scatter and absorb the laser, which affects the intensity of the laser transmission and the accuracy of radar detection. Therefore, it is of great significance to study the laser transmission in the fog. At present, the main method of calculating the scattering and attenuation characteristics of fog is based on the radiation transmission theory, which is realized by a large number of numerical calculations or physical simulation methods, which takes time and cannot meet the requirements for obtaining the fast and accurate results. Therefore, in this paper established are a new laser forward attenuation model and backward attenuation model in low visibility fog. It is found that in low visibility environments, the results calculated by the Monte Carlo method are more accurate than those from most of the existing forward attenuation models. For the cases of 0.86-μm, 1.06-μm, 1.315-μm, 10.6-μm typical lasers incident on different fogs with different visibilities, a backscatter model is established, the error between the fitting result and the calculation result is analyzed, the backward attenuation fitting parameters of the new model are tested, and a more accurate fitting result is obtained.展开更多
Monodisperse Mn3O4 nanoparticles were prepared solvothermally starting from manganese acetate by using polyether amide block copolymers(Pebax2533) as a template in isopropanol. The diameter of the nanoparticles in the...Monodisperse Mn3O4 nanoparticles were prepared solvothermally starting from manganese acetate by using polyether amide block copolymers(Pebax2533) as a template in isopropanol. The diameter of the nanoparticles in the range of 8.7 nm^31.5 nm was decreased with increase of Pebax2533 concentration.The electrochemical properties and application in supercapacitor of Mn3O4 nanoparticles were further studied.The results showed that smaller nanoparticles had a larger capacitance. The higher capacitance of 217.5 F/g at a current density of 0.5 A/g was obtained on 8.7 nm Mn3O4 nanoparticles. The specific capacitance retention of 82% was maintained after 500 times of continuous charge-discharge cycles.展开更多
Under the environment of vehicle-to-vehicle(V2V)communication,the traffic information on a large scale can be obtained and used to coordinate the operation of road traffic system.In this paper,a new traffic lattice hy...Under the environment of vehicle-to-vehicle(V2V)communication,the traffic information on a large scale can be obtained and used to coordinate the operation of road traffic system.In this paper,a new traffic lattice hydrodynamic model is proposed which considers the influence of multiple-lattice self-anticipative density integration on traffic flow in the V2V environment.Through theoretical analysis,the linear stability condition of the new model is derived and the stable condition can be enhanced when more-preceding-lattice self-anticipative density integration effect is taken into account.The property of the unstable traffic density wave in the unstable region is also studied according to the nonlinear analysis.It is shown that the unstable traffic density wave can be described by solving the modified Korteweg-de-Vries(mKdV)equation.Finally,the simulation results demonstrate the validity of the theoretical results.Both theoretical analysis and numerical simulations demonstrate that multiple-lattice self-anticipative density integration effect can enhance the stability of traffic flow system in the V2V environment.展开更多
BACKGROUND Ewing’s sarcoma of the adrenal gland with inferior vena cava(IVC)and right atrium thrombus is extremely rare.Here,we report a case of giant adrenal Ewing’s sarcoma with IVC and right atrium tumor thrombus...BACKGROUND Ewing’s sarcoma of the adrenal gland with inferior vena cava(IVC)and right atrium thrombus is extremely rare.Here,we report a case of giant adrenal Ewing’s sarcoma with IVC and right atrium tumor thrombus and summarize the anesthesia and perioperative management.CASE SUMMARY A young female was admitted to the Department of Urology with intermittent pain under the right costal arch for four months.Enhanced abdominal computed tomography revealed a large retroperitoneal mass(22 cm in diameter),which may have originated from the right adrenal gland and was closely related to the liver.Transthoracic echocardiography showed a strong echogenic filling measuring 70 mm extended from the IVC into the right atrium and ventricle.After preoperative preparation with cardiopulmonary bypass,sufficient blood products,transesophageal echocardiography and multiple monitoring,tumor and thrombus resection by IVC exploration and right atriotomy were successfully performed by a multidisciplinary team.Intraoperative hemodynamic stability was the major concern of anesthesiologists and the status of tumor thrombus and pulmonary embolism were monitored continuously.During transfer of the patient to the intensive care unit(ICU),cardiac arrest occurred without external stimulus.Cardiopulmonary resuscitation was performed immediately and cardiac function was restored after 1 min.In the ICU,extracorporeal membrane oxygenation(ECMO)and continuous renal replacement therapy(CRRT)were provided to maintain cardiac,liver and kidney function.Histopathologic examination confirmed the diagnosis of Ewing’s sarcoma.After postoperative treatments and rehabilitation,the patient was discharged from the urology ward.CONCLUSION An adrenal Ewing’s sarcoma with IVC and right atrium thrombus is extremely rare,and its anesthesia and perioperative management have not been reported.Thus,this report provides significant insights in the perioperative management of patients with adrenal Ewing’s sarcoma and IVC tumor thrombus.Intraoperative circulation fluctuations and sudden cardiovascular events are the major challenges during surgery.In addition,postoperative treatments including ECMO and CRRT provide essential support in critically ill patients.Moreover,this case report also highlights the importance of multidisciplinary cooperation during treatment of the disease.展开更多
Summarizes the processes and development of Baosteel slag processing techniques such as the instantaneous slag chill (ISC) process, the tank-type hot disintegrating process and the rotary drum process. A detailed in...Summarizes the processes and development of Baosteel slag processing techniques such as the instantaneous slag chill (ISC) process, the tank-type hot disintegrating process and the rotary drum process. A detailed introduction of the slag comprehensive utilization at Baosteel is given. The details of Baosteel' s comprehensive utilization in the fields of simering materials, returned slag for steelmaking, road construction, cement production, mixed concrete, new construction materials, ground-filling materials and reinforced material for soft earth are given. Emphasis is placed on source management and ensuring that from both organizational and managerial perspectives, Baosteel' s slag processing techniques are safe and energy-saving, thus constantly demonstrating the issue of sustainable development.展开更多
Lithium dendrite growth due to uneven electrodeposition usually leads to the potential hazard of internal short circuit and shorter lifetime of lithium-based batteries. Extensive efforts have been devoted to explore t...Lithium dendrite growth due to uneven electrodeposition usually leads to the potential hazard of internal short circuit and shorter lifetime of lithium-based batteries. Extensive efforts have been devoted to explore the effects of single or two factors on dendrite growth, involving the diffusion coefficient, exchange current density, electrolyte concentration, temperature, and applied voltage. However, these factors interrelate during battery operation, signifying that a understanding of how they jointly influence the electrodeposition is of paramount importance for the effective suppression of dendrites. Here, we incorporate the dependent relationships among key factors into the phase-field model to capture their synergistic effects on electrodeposition. All the simulations are implemented in our self-written MATLAB code under a unified modeling framework. Following this, five groups of experimentally common dendrite patterns are reproduced and the corresponding electrodeposition driving forces are identified. Unexpectedly, we find that with the decrease of the ratio of exchange current density(or applied voltage) to diffusion coefficient, the electrodeposition morphology changes from needle-like dendrites to columnar dendrites and to uniform deposition. The present phase-field simulation tends to depict the practical electrodeposition process, providing important insights into synergistic regulation to suppress dendrite growth.展开更多
Lithium dendrite growth due to uneven electrodeposition may penetrate the separator and solid electrolyte,causing inner short circuit and potential thermal runaway.Despite great electrochemical phase-field simulation ...Lithium dendrite growth due to uneven electrodeposition may penetrate the separator and solid electrolyte,causing inner short circuit and potential thermal runaway.Despite great electrochemical phase-field simulation efforts devoted to exploring the dendrite growth mechanism under the temperature field,no unified picture has emerged.For example,it remains open how to understand the promotion,inhibition,and dual effects of increased temperature on dendrite growth when using different electrolyte types.Here,by comprehensively considering the temperature-dependent Li_(+)diffusion coefficient,electrochemical reaction coefficient,and initial temperature distribution in phase-field model,we propose that the activation-energy ratio,defined as the ratio of electrochemical reaction activation energy to electrolyte Li+diffusion activation energy,can be used to quantify the effect of temperature on dendrite morphology.Specifically,we establish a mechanism diagram correlating the activation-energy ratio,uniform initial temperature,and maximum dendrite height,which unifies the seemingly contradictory simulation results.Furthermore,results based on nonuniform initial temperature distribution indicate that a positive temperature gradient along the discharging current facilitates uniform Li+deposition and local hotspot should be avoided.These findings provide valuable insights into the temperature-dependent Li dendrite growth and contribute to the practical application of Li metal batteries.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42174101,41974023)+1 种基金the Open Fund of Hubei Luojia Laboratory(Grant No.S22H640201)(Germany)The Offshore International Science and Technology Cooperation Center of Frontier Technology of Geodesy。
文摘It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.
基金support from various funding sources,including the National Natural Science Foundation of China(Grant Nos.U21A20415,82002531)Hebei Provincial Key Research Projects(Grant No.223777157D)the Beijing Health Promotion Association,China(2022).
文摘Background:Triple-negative breast cancer(TNBC)is a heterogeneous,recurring cancer characterized by a high rate of metastasis,poor prognosis,and lack of efficient therapies.KBU2046,a small molecule inhibitor,can inhibit cell motility in malignant tumors,including breast cancer.However,the specific targets and the corresponding mechanism of its function remain unclear.Methods:In this study,we employed(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium)(MTS)assay and transwell assay to investigate the impact of KBU2046 on the proliferation and migration of TNBC cells in vitro.RNA-Seq was used to explore the targets of KBU2046 that inhibit the motility of TNBC.Finally,confirmed the predicted important signaling pathways through RT-qPCR and western blotting.Results:In this study,we found that KBU2046 functioned as a novel transforming growth factor-β(TGF-β1)inhibitor,effectively suppressing tumor cell motility in vitro.Mechanistically,it directly down-regulated leucine-rich repeat-containing 8 family,member E(LRRC8E),latent TGFβ-binding protein 3(LTBP3),dynein light chain 1(DNAL1),and MAF family of bZIP transcription factors(MAFF)genes,along with reduced protein expression of the integrin family.Additionally,KBU2046 decreased phosphorylation levels of Raf and ERK.This deactivation of the ERK signaling pathway impeded cancer invasion and metastasis.Conclusions:In summary,these findings advocate for the utilization of TGF-β1 as a diagnostic and prognostic biomarker and as a therapeutic target in TNBC.Furthermore,our data underscore the potential of KBU2046 as a novel therapeutic strategy for combating cancer metastasis.
基金Science and Technology Innovation 2030-Major Project of“New Generation Artificial Intelligence”granted by Ministry of Science and Technology,Grant Number 2020AAA0109300.
文摘In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.
基金supported by the National Natural Science Foundation of China(82273167,82104174,81602626,12271068,82172558 and 82373112)Jiangsu Province Basic Research Program Natural Science Foundation(Outstanding Youth Fund Project,BK20220063)+7 种基金the Key Program of Basic Science(Natural Science)of Jiangsu Province(22KJA350001)“Huaguo Mountain Talent Plan”of Lianyungang City(Innovative Talents Liu Bin)Qing Lan Project of Jiangsu Universities(Outstanding Young Backbone Teachers,Ji Jing)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.20KJB350008)Priority Academic Program Development of Jiangsu Higher Education Institutions,College Students’Innovative Entrepreneurial Training Plan Program(Project Nos.SY202211641640011,SY202311641640002 and SZ202311641640002)Chen Xiao-Ping Foundation for the Development of Science and Technology of Hubei Province(Project No.CXPJJH123003-027)the Distinguished Young Scholars of Nanjing(JQX20008)Scientific Research Foundation for Returned Scholars of Tongji Hospital(Project 2022hgry021).
文摘Background:Regulatory proteins involved in human cellular division and proliferation,cyclin-dependent kinases 4 and 6(CDK4/6)are overexpressed in numerous cancers,including triple-negative breast cancer(TNBC).TNBC is a common pathological subtype of breast cancer that is prone to recurrence and metastasis,and has a single treatment method.As one of the CDK4/6 inhibitors,abemaciclib can effectively inhibit the growth of breast tumors.In this study,we synthesized LA-D-B1,a derivative of Abemaciclib,and investigated its anti-tumor effects in breast cancer.Methods:Cellular viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay.Cell cloning and migration abilities were determined by colony formation assay and wound healing assay.Cell invasion abilities and adhesion were determined by cell invasion assay and cell adhesion assay.The impact of compound LA-D-B1 on cell proliferation and the cell cycle was analyzed through Western blotting,which quantified the levels of proteins associated with the cyclin-dependent kinase(CDK)4/6-cyclin D-Rb-E2F pathway.The in vivo anti-tumor activity of compound LA-D-B1 was investigated using a chick chorioallantoic membrane(CAM)model.Results:The study demonstrated that LA-D-B1 effectively suppressed breast cancer cell proliferation,induced apoptosis,and caused cell cycle arrest.Furthermore,LA-D-B1 reduced the expression of key proteins in the CDK4/6-cyclin D-Rb-E2F pathway,including CDK4,CDK6 and E2F1.The results also indicated significant antitumor activity of LA-D-B1 in a transplanted tumor model.Conclusion:In this study,LA-D-B1 demonstrated a potent anti-tumor effect by effectively suppressing cell proliferation and inhibiting cell cycle progression in breast cancer.These findings highlight the potential of LA-D-B1 as a valuable compound for enhancing therapeutic outcomes and controlling the progression of breast cancer.
基金supported by the National Natural Science Foundation of China(Grant No.42192535,42174012,42174101,41974023)the Open Fund of Hubei Luojia Laboratory(Grant No.S22H640201)。
文摘Global navigation satellite system(GNSS)technique has irreplaceable advantages in the continuous monitoring of surface deformation.Reducing noise to improve the signal-to-noise ratio(SNR)and extract the concerned signals is of great significance.As an improved algorithm of empirical mode decomposition(EMD),complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)algorithm has better signal processing ability.Using the CEEMDAN algorithm,the height time series of 29GNSS stations in Chinese mainland were analyzed,and good denoising effects and extraction from periodic signals were achieved.The numerical results showed that the annual signal obtained with the CEEMDAN algorithm was significantly based on Lomb_Scargle spectrum analysis,and large differences in the long-term signals were found between the stations at different locations in Chinese mainland.With respect to data denoising,compared with the EMD and wavelet denoising algorithms,the CEEMDAN algorithm respectively improved the SNR by 29.35% and 36.54%,increased the correlation coefficient by 8.67% and 11.96%,and reduced root mean square error(RMSE)by 44.68% and 43.48%,indicating that the CEEMDAN algorithm had better denoising behavior than the other two algorithms.In addition,the results demonstrated that different denoising methods had little influence on estimating the annual vertical deformation velocity.The extraction of periodic signals showed that more components were retained by using the CEEMDAN algorithm than the EMD algorithm,which indicated that the CEEMDAN algorithm had advantages over frequency aliasing.In conclusion,the CEEMDAN algorithm was recommended for processing the GNSS height time series to analyze the vertical deformation due to its excellent features of denoising and the extraction of periodic signals.
基金supported by the Youth Program of National Natural Science Foundation of China(Grant No.52104012)the Key Program of the National Natural Science Foundation of China(Grant No.51734010)the Key Natural Science Projects of Scientific Research Plan in Colleges and Universities of Xinjiang Uygur Autonomous Region(Grant No.XJEDU20211028).
文摘The multiphase flow characteristic is one of the most concerning problems during solid fluidization exploitation of marine natural gas hydrate reservoirs.In this research,a new transient gas-liquid-solid multiphase flow model with hydrate phase transition was developed.Meanwhile,this model considered the coupling relationship among convective heat transfer,hydrate dynamic decomposition,and multi-phase flow.The model can simulate the change of flow pattern from solid-liquid to gas-liquid-solid flow,and describe the distribution character of volume fraction of phase,wellbore temperature and pressure,and hydrate decomposition rate during transportation.The simulation results indicate that the hydrate decomposition region in the wellbore gradually expands,but the hydrate decomposition rate gradually decreases during the solid fluidization exploitation of hydrate.When mining time lasts for 4 h,and the bottom hole pressure decreases by about 0.4 MPa.Increasing NaCl concentration in seawater helps expand hydrate decomposition regions and improves the wellbore hydrate decomposition rate.When the Nacl mass fraction in seawater reaches 15%,it will raise the hydrate decomposition regions to the whole wellbore.In addition,the higher the wellhead backpressure,the lower the decomposition area and decomposition rate of hydrate in the wellbore.When wellhead backpressure reaches 2 MPa,the volume fraction of gas near the wellhead will reduce to about 12%.This work is expected to provide a theoretical basis for the development of marine hydrate reservoirs.
基金This work was supported by the National Natural Science Foundation of China(NSFC)under Grant U19B2004in part by National Key R&D Program of China under Grant 2022YFB2901202+1 种基金in part by the Open Funding Projects of the State Key Laboratory of Communication Content Cognition(No.20K05 and No.A02107)in part by the Special Fund for Science and Technology of Guangdong Province under Grant 2019SDR002.
文摘For networking of big data applications,an essential issue is how to represent networks in vector space for further mining and analysis tasks,e.g.,node classification,clustering,link prediction,and visualization.Most existing studies on this subject mainly concentrate on monoplex networks considering a single type of relation among nodes.However,numerous real-world networks are naturally composed of multiple layers with different relation types;such a network is called a multiplex network.The majority of existing multiplex network embedding methods either overlook node attributes,resort to node labels for training,or underutilize underlying information shared across multiple layers.In this paper,we propose Multiplex Network Infomax(MNI),an unsupervised embedding framework to represent information of multiple layers into a unified embedding space.To be more specific,we aim to maximize the mutual information between the unified embedding and node embeddings of each layer.On the basis of this framework,we present an unsupervised network embedding method for attributed multiplex networks.Experimental results show that our method achieves competitive performance on not only node-related tasks,such as node classification,clustering,and similarity search,but also a typical edge-related task,i.e.,link prediction,at times even outperforming relevant supervised methods,despite that MNI is fully unsupervised.
基金supporting by the Youth Program of National Natural Science Foundation of China(52104012)the China Postdoctoral Science Foundation(2021M693494)+2 种基金the Key Program of the National Natural Science Foundation of China(51734010)the Key Natural Science Projects of Scientific Research Plan in Colleges and Universities of Xinjiang Uygur Autonomous Region(XJEDU2021I028)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-01)
文摘The purpose of this paper is to study the critical sand starting velocity and transformation law of flow pattern based on gas-water-sand three-phase flow in an inclined pipe.Firstly,the indoor simulation experiment system of gas-water-sand three-phase flow was used to test the conversion law of flow pattern based upon the different gas void fraction.Secondly,the influence of slug bubbles on sand migration was investigated according to distinctive hole deviation angles,gas void fraction and sand concentration.Finally,the critical sand starting velocity was tested based on dissimilar hole deviation angles,gas void fraction,sand concentration and sand particle size,and then the influence of the abovementioned key parameters on the sand starting velocity was debated based on the force analysis of the sand particles.The experimental results illustrated that when the gas void fraction was less than 5%,it was bubbly flow.When it increased from 5%to 30%,the bubbly flow and slug flow coexisted.When it was between 30%and 50%,the slug flow and agitated flow coexisted.When it reached 50%,it was agitated flow.Providing that the hole deviation angle was 90°,the phenomenon of overall migration and wavelike migration on the surface of sand bed was observed.On the contrary,the phenomenon of rolling and jumping migration was recognized.The critical sand starting velocity was positively correlated with the hole deviation angle and sand particle size,but negatively associated with the gas void fraction and sand concentration.This research can provide a certain reference for sand-starting production in the field of petroleum engineering.
基金supported by the Youth Program of National Natural Science Foundation of China(Grant No.52104012)the Key Program of the National Natural Science Foundation of China(Grant No.51734010)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M693494)Science Foundation of China University of Petroleum,Beijing(Grant No.2462020XKBH011)the Key Natural Science Projects of Scientific Research Plan in Colleges and Universities of Xinjiang Uygur Autonomous Region(Grant No.XJEDU2021I028)。
文摘During deepwater managed pressure drilling(MPD),the gas kick may occur in abnormally high-pressure formations.If the traditional well control method is adopted,the treatment time is long and the advantage of early gas kick detection of MPD is lost.The dynamic managed pressure well-control(MPWC)method can be used to rapidly treat gas kick in deepwater MPD.In this paper,considering the effect of large-variable-diameter annulus and complex wellbore temperature in deepwater drilling,a simplified model of non-isothermal gas-liquid two-phase flow was established for dynamic deepwater MPWC simulation.Using this model,the response characteristics of outlet flow and wellhead backpressure were investigated.The results indicated that the gas fraction,outlet liquid flow rate,pit gain and wellhead backpressure presented complex alternating characteristics when gas moved upwards in the wellbore due to the large-variable-diameter annulus.The outlet liquid flow rate would be lower than the inlet flow rate and the pit gain would decrease before the gas moved to the wellhead.The variation trend of the wellhead backpressure was consistent with that of the pit gain.When the gas-liquid mixture passed through the choke,the expansion or compression of the gas caused part of the choke pressure drop to be supplemented or unloaded,delaying the response rate of the wellhead backpressure.The wellbore temperature,borehole diameter and seawater depth had different effects on outlet flow rate,pit gain and wellhead backpressure.This research could provide a new idea for well control methods in deepwater managed pressure drilling.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61571355 and 61401342)。
文摘When a laser is transmitted in fog, and the water droplets will scatter and absorb the laser, which affects the intensity of the laser transmission and the accuracy of radar detection. Therefore, it is of great significance to study the laser transmission in the fog. At present, the main method of calculating the scattering and attenuation characteristics of fog is based on the radiation transmission theory, which is realized by a large number of numerical calculations or physical simulation methods, which takes time and cannot meet the requirements for obtaining the fast and accurate results. Therefore, in this paper established are a new laser forward attenuation model and backward attenuation model in low visibility fog. It is found that in low visibility environments, the results calculated by the Monte Carlo method are more accurate than those from most of the existing forward attenuation models. For the cases of 0.86-μm, 1.06-μm, 1.315-μm, 10.6-μm typical lasers incident on different fogs with different visibilities, a backscatter model is established, the error between the fitting result and the calculation result is analyzed, the backward attenuation fitting parameters of the new model are tested, and a more accurate fitting result is obtained.
基金financially supported by the National Natural Science Foundation of China (No.21373034)the Specially Hired Professorship-funding of Jiangsu province (No.scz1211400001)+1 种基金the start-up funds from Changzhou University Jiangsu province,Jiangsu key laboratory of advanced catalytic material and technology,Key laboratory of fine petrochemical engineeringPAPD of Jiangsu Higher Education Institutions
文摘Monodisperse Mn3O4 nanoparticles were prepared solvothermally starting from manganese acetate by using polyether amide block copolymers(Pebax2533) as a template in isopropanol. The diameter of the nanoparticles in the range of 8.7 nm^31.5 nm was decreased with increase of Pebax2533 concentration.The electrochemical properties and application in supercapacitor of Mn3O4 nanoparticles were further studied.The results showed that smaller nanoparticles had a larger capacitance. The higher capacitance of 217.5 F/g at a current density of 0.5 A/g was obtained on 8.7 nm Mn3O4 nanoparticles. The specific capacitance retention of 82% was maintained after 500 times of continuous charge-discharge cycles.
基金Project sponsored by the Natural Science Foundation of Chongqing,China(Grant No.cstc2019jcyj-msxmX0265)。
文摘Under the environment of vehicle-to-vehicle(V2V)communication,the traffic information on a large scale can be obtained and used to coordinate the operation of road traffic system.In this paper,a new traffic lattice hydrodynamic model is proposed which considers the influence of multiple-lattice self-anticipative density integration on traffic flow in the V2V environment.Through theoretical analysis,the linear stability condition of the new model is derived and the stable condition can be enhanced when more-preceding-lattice self-anticipative density integration effect is taken into account.The property of the unstable traffic density wave in the unstable region is also studied according to the nonlinear analysis.It is shown that the unstable traffic density wave can be described by solving the modified Korteweg-de-Vries(mKdV)equation.Finally,the simulation results demonstrate the validity of the theoretical results.Both theoretical analysis and numerical simulations demonstrate that multiple-lattice self-anticipative density integration effect can enhance the stability of traffic flow system in the V2V environment.
基金Supported by the Key Research Foundation from Peking University Third Hospital,No.BYSY2017001 and No.BYSYZD2019043the National Natural Science Foundation of China,No.81771146.
文摘BACKGROUND Ewing’s sarcoma of the adrenal gland with inferior vena cava(IVC)and right atrium thrombus is extremely rare.Here,we report a case of giant adrenal Ewing’s sarcoma with IVC and right atrium tumor thrombus and summarize the anesthesia and perioperative management.CASE SUMMARY A young female was admitted to the Department of Urology with intermittent pain under the right costal arch for four months.Enhanced abdominal computed tomography revealed a large retroperitoneal mass(22 cm in diameter),which may have originated from the right adrenal gland and was closely related to the liver.Transthoracic echocardiography showed a strong echogenic filling measuring 70 mm extended from the IVC into the right atrium and ventricle.After preoperative preparation with cardiopulmonary bypass,sufficient blood products,transesophageal echocardiography and multiple monitoring,tumor and thrombus resection by IVC exploration and right atriotomy were successfully performed by a multidisciplinary team.Intraoperative hemodynamic stability was the major concern of anesthesiologists and the status of tumor thrombus and pulmonary embolism were monitored continuously.During transfer of the patient to the intensive care unit(ICU),cardiac arrest occurred without external stimulus.Cardiopulmonary resuscitation was performed immediately and cardiac function was restored after 1 min.In the ICU,extracorporeal membrane oxygenation(ECMO)and continuous renal replacement therapy(CRRT)were provided to maintain cardiac,liver and kidney function.Histopathologic examination confirmed the diagnosis of Ewing’s sarcoma.After postoperative treatments and rehabilitation,the patient was discharged from the urology ward.CONCLUSION An adrenal Ewing’s sarcoma with IVC and right atrium thrombus is extremely rare,and its anesthesia and perioperative management have not been reported.Thus,this report provides significant insights in the perioperative management of patients with adrenal Ewing’s sarcoma and IVC tumor thrombus.Intraoperative circulation fluctuations and sudden cardiovascular events are the major challenges during surgery.In addition,postoperative treatments including ECMO and CRRT provide essential support in critically ill patients.Moreover,this case report also highlights the importance of multidisciplinary cooperation during treatment of the disease.
文摘Summarizes the processes and development of Baosteel slag processing techniques such as the instantaneous slag chill (ISC) process, the tank-type hot disintegrating process and the rotary drum process. A detailed introduction of the slag comprehensive utilization at Baosteel is given. The details of Baosteel' s comprehensive utilization in the fields of simering materials, returned slag for steelmaking, road construction, cement production, mixed concrete, new construction materials, ground-filling materials and reinforced material for soft earth are given. Emphasis is placed on source management and ensuring that from both organizational and managerial perspectives, Baosteel' s slag processing techniques are safe and energy-saving, thus constantly demonstrating the issue of sustainable development.
基金supported by the National Natural Science Foundation of China (Nos. 52102280, U2030206, 11874254, 51622207)Shanghai Pujiang Program (No. 2019PJD016)+2 种基金Foundation of China Academy of Engineering Physics-Key Laboratory of Neutron Physics (No. 2019BB07)Scientific Research Project of Zhijiang Laboratory (No. 2021PE0AC02)supported by funding from King Abdullah University of Science and Technology (KAUST)。
文摘Lithium dendrite growth due to uneven electrodeposition usually leads to the potential hazard of internal short circuit and shorter lifetime of lithium-based batteries. Extensive efforts have been devoted to explore the effects of single or two factors on dendrite growth, involving the diffusion coefficient, exchange current density, electrolyte concentration, temperature, and applied voltage. However, these factors interrelate during battery operation, signifying that a understanding of how they jointly influence the electrodeposition is of paramount importance for the effective suppression of dendrites. Here, we incorporate the dependent relationships among key factors into the phase-field model to capture their synergistic effects on electrodeposition. All the simulations are implemented in our self-written MATLAB code under a unified modeling framework. Following this, five groups of experimentally common dendrite patterns are reproduced and the corresponding electrodeposition driving forces are identified. Unexpectedly, we find that with the decrease of the ratio of exchange current density(or applied voltage) to diffusion coefficient, the electrodeposition morphology changes from needle-like dendrites to columnar dendrites and to uniform deposition. The present phase-field simulation tends to depict the practical electrodeposition process, providing important insights into synergistic regulation to suppress dendrite growth.
基金National Natural Science Foundation of China(52102280 and U2030206)Shanghai Municipal Science and Technology Commission(no.19DZ2252600)Scientific Research Project of Zhijiang Laboratory(2021PE0AC02).
文摘Lithium dendrite growth due to uneven electrodeposition may penetrate the separator and solid electrolyte,causing inner short circuit and potential thermal runaway.Despite great electrochemical phase-field simulation efforts devoted to exploring the dendrite growth mechanism under the temperature field,no unified picture has emerged.For example,it remains open how to understand the promotion,inhibition,and dual effects of increased temperature on dendrite growth when using different electrolyte types.Here,by comprehensively considering the temperature-dependent Li_(+)diffusion coefficient,electrochemical reaction coefficient,and initial temperature distribution in phase-field model,we propose that the activation-energy ratio,defined as the ratio of electrochemical reaction activation energy to electrolyte Li+diffusion activation energy,can be used to quantify the effect of temperature on dendrite morphology.Specifically,we establish a mechanism diagram correlating the activation-energy ratio,uniform initial temperature,and maximum dendrite height,which unifies the seemingly contradictory simulation results.Furthermore,results based on nonuniform initial temperature distribution indicate that a positive temperature gradient along the discharging current facilitates uniform Li+deposition and local hotspot should be avoided.These findings provide valuable insights into the temperature-dependent Li dendrite growth and contribute to the practical application of Li metal batteries.