期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Synergistic application of molecular docking and machine learning for improved binding pose 被引量:1
1
作者 Yaqi Li Hongrui Lin +5 位作者 He Yang Yannan Yuan Rongfeng Zou gengmo zhou Linfeng Zhang Hang Zheng 《National Science Open》 2024年第2期36-45,共10页
Accurate prediction of protein-ligand complex structures is a crucial step in structure-based drug design.Traditional molecular docking methods exhibit limitations in terms of accuracy and sampling space,while relying... Accurate prediction of protein-ligand complex structures is a crucial step in structure-based drug design.Traditional molecular docking methods exhibit limitations in terms of accuracy and sampling space,while relying on machine-learning approaches may lead to invalid conformations.In this study,we propose a novel strategy that combines molecular docking and machine learning methods.Firstly,the protein-ligand binding poses are predicted using a deep learning model.Subsequently,position-restricted docking on predicted binding poses is performed using Uni-Dock,generating physically constrained and valid binding poses.Finally,the binding poses are re-scored and ranked using machine learning scoring functions.This strategy harnesses the predictive power of machine learning and the physical constraints advantage of molecular docking.Evaluation experiments on multiple datasets demonstrate that,compared to using molecular docking or machine learning methods alone,our proposed strategy can significantly improve the success rate and accuracy of protein-ligand complex structure predictions. 展开更多
关键词 binding pose molecular docking machine learning machine learning scoring function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部