This paper models the giraffe’s jugular veins as a uniform collapsible tube from a rigid skull. The equations governing one-dimensional steady flow through such a tube for various conditions have been developed. The ...This paper models the giraffe’s jugular veins as a uniform collapsible tube from a rigid skull. The equations governing one-dimensional steady flow through such a tube for various conditions have been developed. The effects of inertial and inclination angles that have not been discussed previously have been included. It has been shown that different flows for a uniform tube (vein) are possible. However, this flow matches that of a jugular vein which is supercritical, and the steady solution has been given by the balance between the driving forces of gravity and the viscous resistance to the flow at the right atrium of the heart must be sub-critical for a fixed right-atrium pressure which means that an elastic jump is required to return the flow to sub-critical from the supercritical flow upstream this type of relationship gives rise to flow limitation at the same time given any right atrium fixed pressure there exists a maximum flow rate which when exceeded the boundary conditions of the flow do not hold boundary conditions at the right atrium are not satisfied hence making the steady flow impossible this mechanism of flow limitation is slightly different from the other one in that causes airways through forced expiration from the observation made it is clearly shown that there is an intravascular pressure difference with a change in height.展开更多
The study investigated the effect of the angular position of the head on the blood flow in the jugular vein of giraffes. The vein considered is elastic and collapsible such that its cross-sectional area is not uniform...The study investigated the effect of the angular position of the head on the blood flow in the jugular vein of giraffes. The vein considered is elastic and collapsible such that its cross-sectional area is not uniform. Transmural pressure causes the blood to move along the vein. Mathematical equations describing the flow were developed, and the vein was considered to be inclined at an angle <i>φ</i> to the horizontal. A finite-difference scheme was used to solve the equations of motion for the flow. The results are presented via relevant tables and plots. Our findings show that a change in the position of the head causes variation in the external pressure, which in turn causes variation in the cross-sectional area of the vein. Moreover, a drop (or increase) in the inertial pressure of the blood may cause the vein to collapse (or distend), which again triggers a change in the pressure.展开更多
文摘This paper models the giraffe’s jugular veins as a uniform collapsible tube from a rigid skull. The equations governing one-dimensional steady flow through such a tube for various conditions have been developed. The effects of inertial and inclination angles that have not been discussed previously have been included. It has been shown that different flows for a uniform tube (vein) are possible. However, this flow matches that of a jugular vein which is supercritical, and the steady solution has been given by the balance between the driving forces of gravity and the viscous resistance to the flow at the right atrium of the heart must be sub-critical for a fixed right-atrium pressure which means that an elastic jump is required to return the flow to sub-critical from the supercritical flow upstream this type of relationship gives rise to flow limitation at the same time given any right atrium fixed pressure there exists a maximum flow rate which when exceeded the boundary conditions of the flow do not hold boundary conditions at the right atrium are not satisfied hence making the steady flow impossible this mechanism of flow limitation is slightly different from the other one in that causes airways through forced expiration from the observation made it is clearly shown that there is an intravascular pressure difference with a change in height.
文摘The study investigated the effect of the angular position of the head on the blood flow in the jugular vein of giraffes. The vein considered is elastic and collapsible such that its cross-sectional area is not uniform. Transmural pressure causes the blood to move along the vein. Mathematical equations describing the flow were developed, and the vein was considered to be inclined at an angle <i>φ</i> to the horizontal. A finite-difference scheme was used to solve the equations of motion for the flow. The results are presented via relevant tables and plots. Our findings show that a change in the position of the head causes variation in the external pressure, which in turn causes variation in the cross-sectional area of the vein. Moreover, a drop (or increase) in the inertial pressure of the blood may cause the vein to collapse (or distend), which again triggers a change in the pressure.