期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Development of Human in vitro Brain-blood Barrier Model from Induced Pluripotent Stem Cell-derived Endothelial Cells to Predict the in vivo Permeability of Drugs 被引量:2
1
作者 Yuan Li Xueying Sun +9 位作者 Houfu Liu Liang Huang Guofeng Meng Yu Ding Wenji Su Jiaqi Lu Sophie Gong georg c.terstappen Ru Zhang Wandong Zhang 《Neuroscience Bulletin》 SCIE CAS CSCD 2019年第6期996-1010,共15页
An in vitro blood-brain barrier(BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system.Though many models have been developed, their reproducib... An in vitro blood-brain barrier(BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system.Though many models have been developed, their reproducibility and renewability remain a challenge. Furthermore, drug transport data from many of the models do not correlate well with the data for in vivo BBB drug transport.Induced-pluripotent stem cell(i PSC) technology provides reproducible cell resources for in vitro BBB modeling.Here, we generated a human in vitro BBB model by differentiating the human i PSC(hi PSC) line GM25256 into brain endothelial-type cells. The model displayed BBB characteristics including tight junction proteins(ZO-1,claudin-5, and occludin) and endothelial markers(von Willebrand factor and Ulex), as well as high transendothelial electrical resistance(TEER)(1560 X.cm2±230 X.cm2) and c-GTPase activity. Co-culture with primary rat astrocytes significantly increased the TEER of the model(2970 X.cm2 to 4185 X.cm2). RNAseq analysis confirmed the expression of key BBB-related genes in the hi PSC-derived endothelial cells in comparison with primary human brain microvascular endothelial cells,including P-glycoprotein(Pgp) and breast cancer resistant protein(BCRP). Drug transport assays for nine CNS compounds showed that the permeability of non-Pgp/BCRP and Pgp/BCRP substrates across the model was strongly correlated with rodent in situ brain perfusion data for these compounds(R2= 0.982 and R2= 0.9973,respectively), demonstrating the functionality of the drug transporters in the model. Thus, this model may be used to rapidly screen CNS compounds, to predict the in vivo BBB permeability of these compounds and to study the biology of the BBB. 展开更多
关键词 Blood-brain barrier Drug transport Induced pluripotent stem cell Cell differentiation Prediction of in vivo permeability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部