A small, portable, infrared (wavelength of 7 - 14 μm) system has been designed and developed to study the thermal behavior of the lunar surface and for thermal remote sensing applications. The principal operation of ...A small, portable, infrared (wavelength of 7 - 14 μm) system has been designed and developed to study the thermal behavior of the lunar surface and for thermal remote sensing applications. The principal operation of the system depends on collecting large amounts of infrared light, using a modified Newtonian telescope. The light from the object is reflected by the primary mirror and the secondary mirror. This collected light is then focused into a thermal camera by using an intermediate germanium lens as a field lens to provide a real optical image on the camera sensor. Several observations have been obtained out using the developed system, and eliciting some interesting results. These include lunar observations during different phases and during partial lunar eclipse. The thermal behavior of the lunar surface was identified, proving the system’s functionality and performance. The developed system is, also, particularly suitable tool for outreach programs and students projects which can possibly offer useful learning and exploration opportunities for students in different applications. In this paper, a brief description about the developed system is provided. Some of the obtained results are illustrated. The future applications and improvements to the designed system are also summarized.展开更多
文摘A small, portable, infrared (wavelength of 7 - 14 μm) system has been designed and developed to study the thermal behavior of the lunar surface and for thermal remote sensing applications. The principal operation of the system depends on collecting large amounts of infrared light, using a modified Newtonian telescope. The light from the object is reflected by the primary mirror and the secondary mirror. This collected light is then focused into a thermal camera by using an intermediate germanium lens as a field lens to provide a real optical image on the camera sensor. Several observations have been obtained out using the developed system, and eliciting some interesting results. These include lunar observations during different phases and during partial lunar eclipse. The thermal behavior of the lunar surface was identified, proving the system’s functionality and performance. The developed system is, also, particularly suitable tool for outreach programs and students projects which can possibly offer useful learning and exploration opportunities for students in different applications. In this paper, a brief description about the developed system is provided. Some of the obtained results are illustrated. The future applications and improvements to the designed system are also summarized.