The effects of brassinosteroid signaling on shoot and root development have been characterized in great detail but a simple consistent positive or negative impact on a basic cellular parameter was not identified.In th...The effects of brassinosteroid signaling on shoot and root development have been characterized in great detail but a simple consistent positive or negative impact on a basic cellular parameter was not identified.In this study,we combined digital 3D single-cell shape analysis and single-cell mRNA sequencing to charac-terize root meristems and mature root segments of brassinosteroid-blind mutants and wild type.The resul-tant datasets demonstrate that brassinosteroid signaling affects neither cell volume nor cell proliferation capacity.Instead,brassinosteroid signaling is essential for the precise orientation of cell division planes and the extent and timing of anisotropic cell expansion.Moreover,we found that the cell-aligning effects of brassinosteroid signaling can propagate to normalize the anatomy of both adjacent and distant brassinosteroid-blind cells through non-cell-autonomous functions,which are sufficient to restore growth vigor.Finally,single-cell transcriptome data discern directly brassinosteroid-responsive genes from genes that can react non-cell-autonomously and highlight arabinogalactans as sentinels of brassinosteroid-dependent anisotropic cell expansion.展开更多
Organ function is at least partially shaped and constrained by the organization of their constituent cells. Extensive investigation has revealed mechanisms explaining how these patterns are generated, with less being ...Organ function is at least partially shaped and constrained by the organization of their constituent cells. Extensive investigation has revealed mechanisms explaining how these patterns are generated, with less being known about their functional relevance. In this paper, a methodology to discretize and quantitatively analyze cellular patterning is described. By performing global organ-scale cellular interaction mapping, the organization of cells can be extracted and analyzed using network science. This provides a means to take the developmental analysis of cellular organization in complex organisms beyond qualitative descriptions and provides data-driven approaches to inferring cellular function. The bridging of a structure- function relationship in hypocotyl epidermal cell patterning through global topological analysis provides support for this approach. The analysis of cellular topologies from patterning mutants further enables the contribution of gene activity toward the organizational properties of tissues to be linked, bridging molecular and tissue scales. This systems-based approach to investigate multicellular complexity paves the way to uncovering the principles of complex organ design and achieving predictive genotypephenotype mapping.展开更多
基金funded by core funding from the University of Lausanne,the Swiss National Science Foundation(grant 310030B_185379,awarded to C.S.H.)The Research Foundation-Flanders(FWO,post-doc fellowship 1215820N,awarded to T.E.)+2 种基金the European Research Council(ERC Start ing Grant TORPEDO,714055,awarded to B.D.R.)the BBSRC(grant BB/S002804/1 to G.W.B.)the Deutsche Forschungsgemeinschaft(DFG,post-doctoral fellowship GR 5009/1-1,awarded to M.G.).
文摘The effects of brassinosteroid signaling on shoot and root development have been characterized in great detail but a simple consistent positive or negative impact on a basic cellular parameter was not identified.In this study,we combined digital 3D single-cell shape analysis and single-cell mRNA sequencing to charac-terize root meristems and mature root segments of brassinosteroid-blind mutants and wild type.The resul-tant datasets demonstrate that brassinosteroid signaling affects neither cell volume nor cell proliferation capacity.Instead,brassinosteroid signaling is essential for the precise orientation of cell division planes and the extent and timing of anisotropic cell expansion.Moreover,we found that the cell-aligning effects of brassinosteroid signaling can propagate to normalize the anatomy of both adjacent and distant brassinosteroid-blind cells through non-cell-autonomous functions,which are sufficient to restore growth vigor.Finally,single-cell transcriptome data discern directly brassinosteroid-responsive genes from genes that can react non-cell-autonomously and highlight arabinogalactans as sentinels of brassinosteroid-dependent anisotropic cell expansion.
文摘Organ function is at least partially shaped and constrained by the organization of their constituent cells. Extensive investigation has revealed mechanisms explaining how these patterns are generated, with less being known about their functional relevance. In this paper, a methodology to discretize and quantitatively analyze cellular patterning is described. By performing global organ-scale cellular interaction mapping, the organization of cells can be extracted and analyzed using network science. This provides a means to take the developmental analysis of cellular organization in complex organisms beyond qualitative descriptions and provides data-driven approaches to inferring cellular function. The bridging of a structure- function relationship in hypocotyl epidermal cell patterning through global topological analysis provides support for this approach. The analysis of cellular topologies from patterning mutants further enables the contribution of gene activity toward the organizational properties of tissues to be linked, bridging molecular and tissue scales. This systems-based approach to investigate multicellular complexity paves the way to uncovering the principles of complex organ design and achieving predictive genotypephenotype mapping.