期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
L^0-CONVEX COMPACTNESS AND RANDOM NORMAL STRUCTURE IN L^0(F,B)
1
作者 Tiexin GUO Erxin ZHANG +1 位作者 Yachao WANG george yuan 《Acta Mathematica Scientia》 SCIE CSCD 2020年第2期457-469,共13页
Let(B,||·||)be a Banach space,(?,F,P)a probability space,and L^0(F,B)the set of equivalence classes of strong random elements(or strongly measurable functions)from(?,F,P)to(B,||·||).It is well known that L^0... Let(B,||·||)be a Banach space,(?,F,P)a probability space,and L^0(F,B)the set of equivalence classes of strong random elements(or strongly measurable functions)from(?,F,P)to(B,||·||).It is well known that L^0(F,B)becomes a complete random normed module,which has played an important role in the process of applications of random normed modules to the theory of Lebesgue-Bochner function spaces and random operator theory.Let V be a closed convex subset of B and L^0(F,V)the set of equivalence classes of strong random elements from(?,F,P)to V.The central purpose of this article is to prove the following two results:(1)L^0(F,V)is L^0-convexly compact if and only if V is weakly compact;(2)L^0(F,V)has random normal structure if V is weakly compact and has normal structure.As an application,a general random fixed point theorem for a strong random nonexpansive operator is given,which generalizes and improves several well known results.We hope that our new method,namely skillfully combining measurable selection theorems,the theory of random normed modules,and Banach space techniques,can be applied in the other related aspects. 展开更多
关键词 Complete random normed modules fixed point theorem L^0-convex compactness random normal structure random nonexpansive operators
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部