Solid-state light sources based on laser diode are becoming great alternative for LEDs. Improvement of the thermal characteristics of InGaN LD is very important for realizing reliable devices. In this investigation th...Solid-state light sources based on laser diode are becoming great alternative for LEDs. Improvement of the thermal characteristics of InGaN LD is very important for realizing reliable devices. In this investigation the influence of the temperature of diode on light parameters was studied. White light was obtained by coupling blue light of diode with yellow phosphors: YAG:Ce3+ and GYAG:Ce3+ with nitride. For three values of the temperature of LD’s stem, regulated by Peltier module, CCT, CRI and chromaticity coordinates were measured by spectroradiometer. The importance of emission characteristics of materials was shown. Subsequently, the influence of temperature on laser diode intensity was investigated for 120 hours. This experiment was repeated for different levels of current and temperature. Finally, the steady state of thermal finite element analysis was performed to reveal the distribution of the temperature. The analysis showed the importance of heat sink and also temperature control.展开更多
文摘Solid-state light sources based on laser diode are becoming great alternative for LEDs. Improvement of the thermal characteristics of InGaN LD is very important for realizing reliable devices. In this investigation the influence of the temperature of diode on light parameters was studied. White light was obtained by coupling blue light of diode with yellow phosphors: YAG:Ce3+ and GYAG:Ce3+ with nitride. For three values of the temperature of LD’s stem, regulated by Peltier module, CCT, CRI and chromaticity coordinates were measured by spectroradiometer. The importance of emission characteristics of materials was shown. Subsequently, the influence of temperature on laser diode intensity was investigated for 120 hours. This experiment was repeated for different levels of current and temperature. Finally, the steady state of thermal finite element analysis was performed to reveal the distribution of the temperature. The analysis showed the importance of heat sink and also temperature control.