The design of tunnels must be conducted based on the knowledge of the territory. The longer the structure, the larger the area to be investigated, and the greater the number of surveys and tests to be performed in ord...The design of tunnels must be conducted based on the knowledge of the territory. The longer the structure, the larger the area to be investigated, and the greater the number of surveys and tests to be performed in order to thoroughly examine all the relevant features. Therefore, optimization of the investigation process is strongly required to obtain complete and reliable data for the design of the infrastructure. The fast development of remote sensing technologies and the affordability of their products have contributed to proving their benefits as supports for investigation, encouraging the spreading of automatic or semi-automatic methods for regional scale surveys. Similarly, considering the scale of the rock outcrop, photogrammetric and laser scanner techniques are well-established techniques for representing geometrical features of rock masses, and the benefits of non-contact surveys in terms of safety and time consumption are acknowledged. Unfortunately, in most cases, data obtained at different scales of investigations are only partially integrated or compared, probably due to the missing exchange of knowledge among experts of different fields(e.g. geologists and geotechnical engineers). The authors,after experiencing such a lack of connection among the results of different surveys concerning tunnels,propose a multiscale approach for the optimization of the investigation process, starting from the regional scale, to obtain the data that can be useful not only for planning more detailed surveys in a preliminary phase, but also for making previsions on the discontinuity sets that are present in the rock masses subjected to excavations. A methodological process is proposed and illustrated by means of a case study. Preliminary results are discussed to highlight the potentiality of this method and its limitations.展开更多
Block size and shape depend on the state of fracturing of the rock mass and,consequently,on the geometrical features of the discontinuity sets(mainly orientation,spacing,and persistence).The development of non-contact...Block size and shape depend on the state of fracturing of the rock mass and,consequently,on the geometrical features of the discontinuity sets(mainly orientation,spacing,and persistence).The development of non-contact surveying techniques applied to rock mass characterization offers significant advantages in terms of data numerosity,precision,and accuracy,allowing for performing a rigorous statistical analysis of the database.This fact is particularly evident when dealing with rockfall phenomena:uncertainties in spacing and orientation data could significantly amplify the uncertainties connected with in situ block size distribution(IBSD),which represents a relation between each possible value of the volume and its probability of not being exceeded.In addition to volume,block shape can be considered as a derived parameter that suffers from uncertainties.Many attempts to model the possible trajectories of blocks considering their actual shape have been proposed,aiming to reproduce the effect on motion.The authors proposed analytical equations for calculating the expected value and variance of volume distributions,based on the geometrically correct equation for block volume in the case of three discontinuity sets.They quantify and discuss the effect of both volume and shape variability through a synthetic case study.Firstly,a fictitious rock mass with three discontinuity sets is assumed as the source of rockfall.The IBSDs obtained considering different spacing datasets are quantitatively compared,and the overall uncertainty effect is assessed,proving the correctness of the proposed equations.Then,block shape distributions are obtained and compared,confirming the variability of shapes within the same IBSD.Finally,a comparison between trajectory simulations on the synthetic slope is reported,aiming to highlight the effects of the propagation of uncertainties to block volume and shape estimation.The benefits of an approach that can quantify the uncertainties are discussed from the perspective of improving the reliability of simulations.展开更多
Rockfall risk is often mitigated and managed by employing defensive structures to catch falling blocks(i.e.,passive works).Due to the widely spread nature of rockfall,the presence of such defensive structures is a com...Rockfall risk is often mitigated and managed by employing defensive structures to catch falling blocks(i.e.,passive works).Due to the widely spread nature of rockfall,the presence of such defensive structures is a common sight,especially in mountain areas.The most common passive defensive structures are rockfall flexible barriers,due to their significant flexibility and cost-effectiveness.The protective performance of said structures,though,can be severely reduced by prolonged exposure to weathering agents,vegetation growth,and rockfall impacts:these issues must be addressed by performing maintenance.With a view to optimizing the maintenance procedure,the need arises for a tool capable of providing useful information regarding the condition of existing rockfall barriers,in the simplest yet most complete and comprehensive way possible.The present work provides such a tool,alongside the required instruments for it to function properly.Basically,it consists of a survey spreadsheet to be used to collect raw data based on visual inspection of the barriers,coupled with the methodology to score their conditions and to produce a database with which to manage and plan their maintenance.An application to a suitable case study in the Central Italian Alps,featuring a number of barriers in different conditions,is then presented,and its results are discussed.展开更多
文摘The design of tunnels must be conducted based on the knowledge of the territory. The longer the structure, the larger the area to be investigated, and the greater the number of surveys and tests to be performed in order to thoroughly examine all the relevant features. Therefore, optimization of the investigation process is strongly required to obtain complete and reliable data for the design of the infrastructure. The fast development of remote sensing technologies and the affordability of their products have contributed to proving their benefits as supports for investigation, encouraging the spreading of automatic or semi-automatic methods for regional scale surveys. Similarly, considering the scale of the rock outcrop, photogrammetric and laser scanner techniques are well-established techniques for representing geometrical features of rock masses, and the benefits of non-contact surveys in terms of safety and time consumption are acknowledged. Unfortunately, in most cases, data obtained at different scales of investigations are only partially integrated or compared, probably due to the missing exchange of knowledge among experts of different fields(e.g. geologists and geotechnical engineers). The authors,after experiencing such a lack of connection among the results of different surveys concerning tunnels,propose a multiscale approach for the optimization of the investigation process, starting from the regional scale, to obtain the data that can be useful not only for planning more detailed surveys in a preliminary phase, but also for making previsions on the discontinuity sets that are present in the rock masses subjected to excavations. A methodological process is proposed and illustrated by means of a case study. Preliminary results are discussed to highlight the potentiality of this method and its limitations.
文摘Block size and shape depend on the state of fracturing of the rock mass and,consequently,on the geometrical features of the discontinuity sets(mainly orientation,spacing,and persistence).The development of non-contact surveying techniques applied to rock mass characterization offers significant advantages in terms of data numerosity,precision,and accuracy,allowing for performing a rigorous statistical analysis of the database.This fact is particularly evident when dealing with rockfall phenomena:uncertainties in spacing and orientation data could significantly amplify the uncertainties connected with in situ block size distribution(IBSD),which represents a relation between each possible value of the volume and its probability of not being exceeded.In addition to volume,block shape can be considered as a derived parameter that suffers from uncertainties.Many attempts to model the possible trajectories of blocks considering their actual shape have been proposed,aiming to reproduce the effect on motion.The authors proposed analytical equations for calculating the expected value and variance of volume distributions,based on the geometrically correct equation for block volume in the case of three discontinuity sets.They quantify and discuss the effect of both volume and shape variability through a synthetic case study.Firstly,a fictitious rock mass with three discontinuity sets is assumed as the source of rockfall.The IBSDs obtained considering different spacing datasets are quantitatively compared,and the overall uncertainty effect is assessed,proving the correctness of the proposed equations.Then,block shape distributions are obtained and compared,confirming the variability of shapes within the same IBSD.Finally,a comparison between trajectory simulations on the synthetic slope is reported,aiming to highlight the effects of the propagation of uncertainties to block volume and shape estimation.The benefits of an approach that can quantify the uncertainties are discussed from the perspective of improving the reliability of simulations.
文摘Rockfall risk is often mitigated and managed by employing defensive structures to catch falling blocks(i.e.,passive works).Due to the widely spread nature of rockfall,the presence of such defensive structures is a common sight,especially in mountain areas.The most common passive defensive structures are rockfall flexible barriers,due to their significant flexibility and cost-effectiveness.The protective performance of said structures,though,can be severely reduced by prolonged exposure to weathering agents,vegetation growth,and rockfall impacts:these issues must be addressed by performing maintenance.With a view to optimizing the maintenance procedure,the need arises for a tool capable of providing useful information regarding the condition of existing rockfall barriers,in the simplest yet most complete and comprehensive way possible.The present work provides such a tool,alongside the required instruments for it to function properly.Basically,it consists of a survey spreadsheet to be used to collect raw data based on visual inspection of the barriers,coupled with the methodology to score their conditions and to produce a database with which to manage and plan their maintenance.An application to a suitable case study in the Central Italian Alps,featuring a number of barriers in different conditions,is then presented,and its results are discussed.