We successfully obtained 3D skeletal images of Hyla suweonensis, employing a nondestructive method by applying appropriate anesthesia and limiting the radiation dose. H. suweonensis is a tree frog endemic to Korea and...We successfully obtained 3D skeletal images of Hyla suweonensis, employing a nondestructive method by applying appropriate anesthesia and limiting the radiation dose. H. suweonensis is a tree frog endemic to Korea and is on the list of endangered species. Previous studies have employed caliper-based measurements and two-dimensional (2D) X-ray imaging for anatomical analyses of the skeletal system or bone types of H. suweonensis. In this work we reconstructed three-dimensional (3D) skeletal images of H. suweonensis, utilizing a nondestructive micro-computed tomography (micro-CT) with a short scan and low radiation dose (i.e. 4 min and 0.16 Gy). Importantly, our approach can be applied to the imaging of 3D skeletal systems of other endangered frog species, allowing both versatile and high contrast images of anatomical structures without causing any significant damages to the living animal.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (grant numbers: NRF-2015R1C1A1A01052498 and NRF2014R1A1A1006010)
文摘We successfully obtained 3D skeletal images of Hyla suweonensis, employing a nondestructive method by applying appropriate anesthesia and limiting the radiation dose. H. suweonensis is a tree frog endemic to Korea and is on the list of endangered species. Previous studies have employed caliper-based measurements and two-dimensional (2D) X-ray imaging for anatomical analyses of the skeletal system or bone types of H. suweonensis. In this work we reconstructed three-dimensional (3D) skeletal images of H. suweonensis, utilizing a nondestructive micro-computed tomography (micro-CT) with a short scan and low radiation dose (i.e. 4 min and 0.16 Gy). Importantly, our approach can be applied to the imaging of 3D skeletal systems of other endangered frog species, allowing both versatile and high contrast images of anatomical structures without causing any significant damages to the living animal.