Corona Virus Disease-2019(COVID-19)continues to spread rapidly in the world.It has dramatically affected daily lives,public health,and the world economy.This paper presents a segmentation and classification framework ...Corona Virus Disease-2019(COVID-19)continues to spread rapidly in the world.It has dramatically affected daily lives,public health,and the world economy.This paper presents a segmentation and classification framework of COVID-19 images based on deep learning.Firstly,the classification process is employed to discriminate between COVID-19,non-COVID,and pneumonia by Convolutional Neural Network(CNN).Then,the segmentation process is applied for COVID-19 and pneumonia CT images.Finally,the resulting segmented images are used to identify the infected region,whether COVID-19 or pneumonia.The proposed CNN consists of four Convolutional(Conv)layers,four batch normalization layers,and four Rectified Linear Units(ReLUs).The sizes of Conv layer used filters are 8,16,32,and 64.Four maxpooling layers are employed with a stride of 2 and a 2×2 window.The classification layer comprises a Fully-Connected(FC)layer and a soft-max activation function used to take the classification decision.A novel saliencybased region detection algorithm and an active contour segmentation strategy are applied to segment COVID-19 and pneumonia CT images.The acquired findings substantiate the efficacy of the proposed framework for helping the specialists in automated diagnosis applications.展开更多
Recently,ground-penetrating radar(GPR)has been extended as a well-known area to investigate the subsurface objects.However,its output has a low resolution,and it needs more processing for more interpretation.This pape...Recently,ground-penetrating radar(GPR)has been extended as a well-known area to investigate the subsurface objects.However,its output has a low resolution,and it needs more processing for more interpretation.This paper presents two algorithms for landmine detection from GPR images.The first algorithm depends on a multi-scale technique.A Gaussian kernel with a particular scale is convolved with the image,and after that,two gradients are estimated;horizontal and vertical gradients.Then,histogram and cumulative histogram are estimated for the overall gradient image.The bin values on the cumulative histogram are used for discrimination between images with and without landmines.Moreover,a neural classifier is used to classify images with cumulative histograms as feature vectors.The second algorithm is based on scale-space analysis with the number of speeded-up robust feature(SURF)points as the key parameter for classification.In addition,this paper presents a framework for size reduction of GPR images based on decimation for efficient storage.The further classification steps can be performed on images after interpolation.The sensitivity of classification accuracy to the interpolation process is studied in detail.展开更多
基金This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program.
文摘Corona Virus Disease-2019(COVID-19)continues to spread rapidly in the world.It has dramatically affected daily lives,public health,and the world economy.This paper presents a segmentation and classification framework of COVID-19 images based on deep learning.Firstly,the classification process is employed to discriminate between COVID-19,non-COVID,and pneumonia by Convolutional Neural Network(CNN).Then,the segmentation process is applied for COVID-19 and pneumonia CT images.Finally,the resulting segmented images are used to identify the infected region,whether COVID-19 or pneumonia.The proposed CNN consists of four Convolutional(Conv)layers,four batch normalization layers,and four Rectified Linear Units(ReLUs).The sizes of Conv layer used filters are 8,16,32,and 64.Four maxpooling layers are employed with a stride of 2 and a 2×2 window.The classification layer comprises a Fully-Connected(FC)layer and a soft-max activation function used to take the classification decision.A novel saliencybased region detection algorithm and an active contour segmentation strategy are applied to segment COVID-19 and pneumonia CT images.The acquired findings substantiate the efficacy of the proposed framework for helping the specialists in automated diagnosis applications.
基金This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program。
文摘Recently,ground-penetrating radar(GPR)has been extended as a well-known area to investigate the subsurface objects.However,its output has a low resolution,and it needs more processing for more interpretation.This paper presents two algorithms for landmine detection from GPR images.The first algorithm depends on a multi-scale technique.A Gaussian kernel with a particular scale is convolved with the image,and after that,two gradients are estimated;horizontal and vertical gradients.Then,histogram and cumulative histogram are estimated for the overall gradient image.The bin values on the cumulative histogram are used for discrimination between images with and without landmines.Moreover,a neural classifier is used to classify images with cumulative histograms as feature vectors.The second algorithm is based on scale-space analysis with the number of speeded-up robust feature(SURF)points as the key parameter for classification.In addition,this paper presents a framework for size reduction of GPR images based on decimation for efficient storage.The further classification steps can be performed on images after interpolation.The sensitivity of classification accuracy to the interpolation process is studied in detail.