In this paper, we report the growth of single crystals of Co_x Zn_(1-x)S and Co_x Zn_(1-x)Se (0<x<0.3) by the method of chemical transport, using iodine as a transport agent. The light green color of single crys...In this paper, we report the growth of single crystals of Co_x Zn_(1-x)S and Co_x Zn_(1-x)Se (0<x<0.3) by the method of chemical transport, using iodine as a transport agent. The light green color of single crystal Co_xZn_(1-x)S as well as the light brown color of Co_xZn_(1-x)Se become deep with an increase in x. The compositions of the single crystals were nearly stoichiometric. The transfer rate decreases with an increase of the x value. The growth rate was related to the temperature difference. The large temperature difference speed up the growth rate, but the size of crystal obtained was small. In general, the optimal temperature difference was 15℃. From X-ray diffraction measurements, the structures of crystals Co_xZn_(1-x)S and Co_xZn_(1-x)Se (0<x<0.1) were identified to be zinc blende structure similar to that of ZnS and ZnSe.展开更多
文摘In this paper, we report the growth of single crystals of Co_x Zn_(1-x)S and Co_x Zn_(1-x)Se (0<x<0.3) by the method of chemical transport, using iodine as a transport agent. The light green color of single crystal Co_xZn_(1-x)S as well as the light brown color of Co_xZn_(1-x)Se become deep with an increase in x. The compositions of the single crystals were nearly stoichiometric. The transfer rate decreases with an increase of the x value. The growth rate was related to the temperature difference. The large temperature difference speed up the growth rate, but the size of crystal obtained was small. In general, the optimal temperature difference was 15℃. From X-ray diffraction measurements, the structures of crystals Co_xZn_(1-x)S and Co_xZn_(1-x)Se (0<x<0.1) were identified to be zinc blende structure similar to that of ZnS and ZnSe.