We obtain weighted distributional inequalities for multilinear commutators of the fractional integral on spaces of homogeneous type, The techniques developed in this work involve the behavior of some fractional maxima...We obtain weighted distributional inequalities for multilinear commutators of the fractional integral on spaces of homogeneous type, The techniques developed in this work involve the behavior of some fractional maximal functions. In relation to these operators, as a main tool, we prove a weighted weak type boundedness result, which is interesting in itself.展开更多
For a Young function θ with 0 ≤α 〈 1, let Mα,θ be the fractional Orlicz maximal operator defined in the context of the spaces of homogeneous type (X, d, μ) by Mα,θf(x) = supx∈(B)α ||f||θ,B, where...For a Young function θ with 0 ≤α 〈 1, let Mα,θ be the fractional Orlicz maximal operator defined in the context of the spaces of homogeneous type (X, d, μ) by Mα,θf(x) = supx∈(B)α ||f||θ,B, where ||f||θ,B is the mean Luxemburg norm of f on a ball B. When α= 0 we simply denote it by Me. In this paper we prove that if Ф and ψare two Young functions, there exists a third Young function θ such that the composition Mα,ψ o MФ is pointwise equivalent to Mα,θ. As a consequence we prove that for some Young functions θ, if Mα,θf 〈∞a.e. and δ ∈(0,1) then (Mα,θf)δ is an A1-weight.展开更多
基金Consejo Nacional de Investigaciones Científicas y Técnicas de la República ArgentinaUniversidad Nacional del Litoral
文摘We obtain weighted distributional inequalities for multilinear commutators of the fractional integral on spaces of homogeneous type, The techniques developed in this work involve the behavior of some fractional maximal functions. In relation to these operators, as a main tool, we prove a weighted weak type boundedness result, which is interesting in itself.
文摘For a Young function θ with 0 ≤α 〈 1, let Mα,θ be the fractional Orlicz maximal operator defined in the context of the spaces of homogeneous type (X, d, μ) by Mα,θf(x) = supx∈(B)α ||f||θ,B, where ||f||θ,B is the mean Luxemburg norm of f on a ball B. When α= 0 we simply denote it by Me. In this paper we prove that if Ф and ψare two Young functions, there exists a third Young function θ such that the composition Mα,ψ o MФ is pointwise equivalent to Mα,θ. As a consequence we prove that for some Young functions θ, if Mα,θf 〈∞a.e. and δ ∈(0,1) then (Mα,θf)δ is an A1-weight.