期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Weighted Weak-type Estimates for Multilinear Commutators of Fractional Integrals on Spaces of Homogeneous Type 被引量:5
1
作者 Osvaldo GOROSITO gladis pradolini Oscar SALINAS 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第10期1813-1826,共14页
We obtain weighted distributional inequalities for multilinear commutators of the fractional integral on spaces of homogeneous type, The techniques developed in this work involve the behavior of some fractional maxima... We obtain weighted distributional inequalities for multilinear commutators of the fractional integral on spaces of homogeneous type, The techniques developed in this work involve the behavior of some fractional maximal functions. In relation to these operators, as a main tool, we prove a weighted weak type boundedness result, which is interesting in itself. 展开更多
关键词 COMMUTATORS fractional integral operator multilinear operators
原文传递
Composition of Fractional Orlicz Maximal Operators and A1-weights on Spaces of Homogeneous Type 被引量:1
2
作者 Ana L. BERNARDIS gladis pradolini +1 位作者 Maria LORENTE Maria Silvina RIVEROS 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第8期1509-1518,共10页
For a Young function θ with 0 ≤α 〈 1, let Mα,θ be the fractional Orlicz maximal operator defined in the context of the spaces of homogeneous type (X, d, μ) by Mα,θf(x) = supx∈(B)α ||f||θ,B, where... For a Young function θ with 0 ≤α 〈 1, let Mα,θ be the fractional Orlicz maximal operator defined in the context of the spaces of homogeneous type (X, d, μ) by Mα,θf(x) = supx∈(B)α ||f||θ,B, where ||f||θ,B is the mean Luxemburg norm of f on a ball B. When α= 0 we simply denote it by Me. In this paper we prove that if Ф and ψare two Young functions, there exists a third Young function θ such that the composition Mα,ψ o MФ is pointwise equivalent to Mα,θ. As a consequence we prove that for some Young functions θ, if Mα,θf 〈∞a.e. and δ ∈(0,1) then (Mα,θf)δ is an A1-weight. 展开更多
关键词 Orlicz maximal function spaces of homogeneous type WEIGHTS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部