The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) a...The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) and TiO_(2)barrier coatings to reduce the degradation of magnesium alloy(Mg-Ca-Zn)surfaces.These coatings were deposited by the anodization method and the spin-coating technique,respectively.The anodized layer was coated with TiO_(2)generated from the hydrolysis of 3%weight of TTIP(Ti[OCH(CH_(3))_(2)]_(4),Titanium(IV)isopropoxide)in 2-Propanol deposited by the spin-coating method.Studying the degradation in Ringer’s solution by electrochemical impedance spectroscopy and OCP revealed a 98%reduction in pittings in uncoated samples after 14 days of immersion.The p H measurements revealed that the TiO_(2)coating reduced the alkalization of the physiological environment,keeping the pH at 6.0 values.In vitro studies of two types of bacteria(E.coli and S.aureus)exhibited zones of inhibition in the agar and activity bactericidal(kill time test).The mechanisms behind the improved degradation resistance and enhanced antibacterial activity are presented and discussed here.Surface modification with Mg(OH)_(2)/TiO_(2)coatings is a promising strategy to control the biodegradation of magnesium implants for bone regeneration.展开更多
Aluminum alloy samples, 6061-T6 and 2219-T42, were exposed to Caribbean seawater for 90 d. The fluctuations of open circuit potential, considered as electrochemical noise (EN), were used to characterize and compare in...Aluminum alloy samples, 6061-T6 and 2219-T42, were exposed to Caribbean seawater for 90 d. The fluctuations of open circuit potential, considered as electrochemical noise (EN), were used to characterize and compare initial pitting events, which appeared on their surfaces. EN analysis was carried out using the power spectral density (PSD) vs frequency. The decrease of the β exponent in PSD graphs indicated a release of spontaneous energy with the progress of pit formation in seawater. The fluctuations were associated with the breakdown and formation of new corrosion layers. The values of β exponent in PSD graphs suggest that corrosion process of AA2219-T42 alloy occurs as a persistent non-stationary process, the dynamics of which is controlled by fractional Brownian motion (fBm), while on AA6061-T6 alloy the corrosion process was dominated by stationary and weakly persistent features, with the contribution of fractional Gaussian noise (fGn). After the exposure in seawater, SEM-EDX analysis revealed insoluble intermetallic particles on the alloys, rich in Cu or Fe and irregularly distributed. The preferential dissolution of Mg and Al occurs from the S-phase (Al2CuMg) of AA2219-T42 alloy.展开更多
基金financed by the FOMIX-Yucatán 2008-108160,CONACYT LAB-2009-01-123913,292692,294643,188345,and 204822 projectsthe financial support received from CONACYT。
文摘The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) and TiO_(2)barrier coatings to reduce the degradation of magnesium alloy(Mg-Ca-Zn)surfaces.These coatings were deposited by the anodization method and the spin-coating technique,respectively.The anodized layer was coated with TiO_(2)generated from the hydrolysis of 3%weight of TTIP(Ti[OCH(CH_(3))_(2)]_(4),Titanium(IV)isopropoxide)in 2-Propanol deposited by the spin-coating method.Studying the degradation in Ringer’s solution by electrochemical impedance spectroscopy and OCP revealed a 98%reduction in pittings in uncoated samples after 14 days of immersion.The p H measurements revealed that the TiO_(2)coating reduced the alkalization of the physiological environment,keeping the pH at 6.0 values.In vitro studies of two types of bacteria(E.coli and S.aureus)exhibited zones of inhibition in the agar and activity bactericidal(kill time test).The mechanisms behind the improved degradation resistance and enhanced antibacterial activity are presented and discussed here.Surface modification with Mg(OH)_(2)/TiO_(2)coatings is a promising strategy to control the biodegradation of magnesium implants for bone regeneration.
基金the partial financial support of this study from CONACYT (Grant 179110)
文摘Aluminum alloy samples, 6061-T6 and 2219-T42, were exposed to Caribbean seawater for 90 d. The fluctuations of open circuit potential, considered as electrochemical noise (EN), were used to characterize and compare initial pitting events, which appeared on their surfaces. EN analysis was carried out using the power spectral density (PSD) vs frequency. The decrease of the β exponent in PSD graphs indicated a release of spontaneous energy with the progress of pit formation in seawater. The fluctuations were associated with the breakdown and formation of new corrosion layers. The values of β exponent in PSD graphs suggest that corrosion process of AA2219-T42 alloy occurs as a persistent non-stationary process, the dynamics of which is controlled by fractional Brownian motion (fBm), while on AA6061-T6 alloy the corrosion process was dominated by stationary and weakly persistent features, with the contribution of fractional Gaussian noise (fGn). After the exposure in seawater, SEM-EDX analysis revealed insoluble intermetallic particles on the alloys, rich in Cu or Fe and irregularly distributed. The preferential dissolution of Mg and Al occurs from the S-phase (Al2CuMg) of AA2219-T42 alloy.