Photooxidative stress,when combined with elevated temperatures,triggers various defense mechanisms leading to physiological,biochemical,and morphological changes in fruit tissue.Furthermore,during sun damage,apple fru...Photooxidative stress,when combined with elevated temperatures,triggers various defense mechanisms leading to physiological,biochemical,and morphological changes in fruit tissue.Furthermore,during sun damage,apple fruit undergo textural changes characterized by high flesh firmness compared to unexposed fruit.Fuji and Royal Gala apples were suddenly exposed to sunlight on the tree and then sampled for up to 29 days.Cell wall components and lignin biosynthetic pathway analyses were carried out on the fruit tissue.At harvest,Fuji apples with different sun exposure levels,such as exposed to direct sunlight(Exp),shaded(Non-Exp),and with severe sun damage(Sev),were also characterized.In fruit suddenly exposed to sunlight,the expression levels of phenylpropanoid-related genes,phenylalanine ammonia lyase(MdPAL),chalcone synthase(MdCHS),and flavanone-3-hydroxylase(MdF3H),were upregulated in the skin and flesh of Exp and Sev.Exposure had little effect on the lignin-related genes caffeic acid Omethyltransferase 1(MdCOMT1)and cinnamyl alcohol dehydrogenase(MdCAD)in the skin;however,the expression of these genes was highly induced in the flesh of Exp and Sev in both cultivars.Lignin deposition increased significantly in skin with sun injury(Sev);in flesh,this increase occurred late during the stress treatment.Additionally,the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase(MdACS)and 1-aminocyclopropane-1-carboxylate oxidase(MdACO)were highly expressed in the skin and flesh tissues but were more upregulated in Sev than in Exp during the time-course experiment,which paralleled the induction of the phenylpropanoid pathway and lignin accumulation.At harvest,flesh from Sev fruit exhibited higher firmness than that from Non-Exp and Exp fruit,although no differences were observed in the alcohol-insoluble residues(AIR)among groups.The fractionation of cell wall polymers revealed an increase in the uronic acid contents of the water-soluble pectin fraction(WSF)in Exp and Sev tissues compared to Non-Exp tissues,while the other pectin-rich fractions,that is,CDTA-soluble(CSF)and Na2CO3-soluble(NSF),were increased only in Sev.The amount of hemicellulose and cellulose did not differ among fruit conditions.These findings suggest that increases in the flesh firmness of apples can be promoted by photooxidative stress,which is associated with the induction of lignin accumulation in the skin and flesh of stressed fruit,with the involvement of stress phytohormones such as ethylene.展开更多
基金supported by the‘Comision Nacional de Ciencia y Tecnología,Chile’[Fondecyt Regular#1100013]the USDA National Institute of Food and Agriculture Hatch project 1014919,titled“Crop Improvement and Sustainable Production Systems”(WSU reference 00011).
文摘Photooxidative stress,when combined with elevated temperatures,triggers various defense mechanisms leading to physiological,biochemical,and morphological changes in fruit tissue.Furthermore,during sun damage,apple fruit undergo textural changes characterized by high flesh firmness compared to unexposed fruit.Fuji and Royal Gala apples were suddenly exposed to sunlight on the tree and then sampled for up to 29 days.Cell wall components and lignin biosynthetic pathway analyses were carried out on the fruit tissue.At harvest,Fuji apples with different sun exposure levels,such as exposed to direct sunlight(Exp),shaded(Non-Exp),and with severe sun damage(Sev),were also characterized.In fruit suddenly exposed to sunlight,the expression levels of phenylpropanoid-related genes,phenylalanine ammonia lyase(MdPAL),chalcone synthase(MdCHS),and flavanone-3-hydroxylase(MdF3H),were upregulated in the skin and flesh of Exp and Sev.Exposure had little effect on the lignin-related genes caffeic acid Omethyltransferase 1(MdCOMT1)and cinnamyl alcohol dehydrogenase(MdCAD)in the skin;however,the expression of these genes was highly induced in the flesh of Exp and Sev in both cultivars.Lignin deposition increased significantly in skin with sun injury(Sev);in flesh,this increase occurred late during the stress treatment.Additionally,the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase(MdACS)and 1-aminocyclopropane-1-carboxylate oxidase(MdACO)were highly expressed in the skin and flesh tissues but were more upregulated in Sev than in Exp during the time-course experiment,which paralleled the induction of the phenylpropanoid pathway and lignin accumulation.At harvest,flesh from Sev fruit exhibited higher firmness than that from Non-Exp and Exp fruit,although no differences were observed in the alcohol-insoluble residues(AIR)among groups.The fractionation of cell wall polymers revealed an increase in the uronic acid contents of the water-soluble pectin fraction(WSF)in Exp and Sev tissues compared to Non-Exp tissues,while the other pectin-rich fractions,that is,CDTA-soluble(CSF)and Na2CO3-soluble(NSF),were increased only in Sev.The amount of hemicellulose and cellulose did not differ among fruit conditions.These findings suggest that increases in the flesh firmness of apples can be promoted by photooxidative stress,which is associated with the induction of lignin accumulation in the skin and flesh of stressed fruit,with the involvement of stress phytohormones such as ethylene.