期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Signatures of Acid Concentration on the Optical Band Gap and Associated Band Tails of Chitosan from Shrimp for Application in Optoelectronic Devices
1
作者 Edwin Atego John o. Agumba godfrey o. barasa 《Advances in Chemical Engineering and Science》 2022年第1期1-12,共12页
Over the recent years, the global increase of electronic wastes from electrical and electronic devices (e-wastes) has been on an alarming trend in quantity and toxicity and e-waste<span style="font-family:Verd... Over the recent years, the global increase of electronic wastes from electrical and electronic devices (e-wastes) has been on an alarming trend in quantity and toxicity and e-waste<span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> are non-biodegradable resulting in its cumulative increase over time. Changes in technology and unrestricted regional movement of electrical devices have facilitated the generation of more e-wastes leading to high levels of air, soil and water pollution. To address these challenges, biodegradable organic components such as chitosan have been used to replace their inorganic counterparts for optoelectronic device applications. However, in-depth knowledge on how such materials can be used to tune the optical properties of their hybrid semiconductors is unrivaled. Thus, systematic studies of the interplay between the preparation methods and optical </span><span style="font-family:Verdana;">band gap and Urbach energy of such organic components are vital. This study has thus been dedicated to map out the effect of acid concentrations</span><span style="font-family:Verdana;"> during chitosan extraction on the corresponding optical band gap and Urbach energy with a view to improving its applications in optoelectronic devices. The,</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">1.0 to 2.5 molar hydrochloric acid (HCl) was used for 12 hours at room temperature during demineralization and 2.0 molar sodium hydroxide (NaOH) during deprotonation processes. The absorbance spectrum of the samples was collected by UV-Vis spectrophotometer and band gap energies were analyzed by performing Tauc’s plot. This study revealed that the energy band gap of chitosan extracted from 1 M HCl, 1.5 M HCl, 2.0 M HCl and 2.5 M HCl were 3.72 eV, 3.50 eV</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> 3.45 eV and 3.36 eV respectively. Furthermore, the Urbach energy of chitosan extracted from 1 M HCl, 1.5 M HCl, 2.0 M HCl and 2.5 M HCl were 0.60496 eV, 0.5292 eV, 4724 eV and 0.2257 eV, respectively.</span> 展开更多
关键词 Chitosa Optical Band Gap Urbach Energy Absorbance Spectrum Tauc Plot
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部