期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Social Engineering Attack Classifications on Social Media Using Deep Learning
1
作者 Yichiet Aun Ming-Lee Gan +1 位作者 Nur Haliza Binti Abdul Wahab goh hock guan 《Computers, Materials & Continua》 SCIE EI 2023年第3期4917-4931,共15页
In defense-in-depth,humans have always been the weakest link in cybersecurity.However,unlike common threats,social engineering poses vulnerabilities not directly quantifiable in penetration testing.Most skilled social... In defense-in-depth,humans have always been the weakest link in cybersecurity.However,unlike common threats,social engineering poses vulnerabilities not directly quantifiable in penetration testing.Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware.Social Engineering(SE)in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic.In this paper,a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory(RNN-LSTM)to identify well-disguised SE threats in social media posts.We use a custom dataset crawled from hundreds of corporate and personal Facebook posts.First,the social engineering attack detection pipeline(SEAD)is designed to filter out social posts with malicious intents using domain heuristics.Next,each social media post is tokenized into sentences and then analyzed with a sentiment analyzer before being labelled as an anomaly or normal training data.Then,we train an RNN-LSTM model to detect five types of social engineering attacks that potentially contain signs of information gathering.The experimental result showed that the Social Engineering Attack(SEA)model achieves 0.84 in classification precision and 0.81 in recall compared to the ground truth labeled by network experts.The experimental results showed that the semantics and linguistics similarities are an effective indicator for early detection of SEA. 展开更多
关键词 Social engineering attack CYBERSECURITY machine learning(ML) artificial neural network(ANN) random forest classifier decision tree(DT)classifier
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部