In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H...In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].展开更多
In this paper, we study the existence and multiplicity of solutions with a prescribed L2-norm for a class of nonlinear fractional Choquard equations in RN:(-△)su-λu =(κα*|u|p)|u|p-2u,where N≥3,s∈(0,1),α∈(0,N),...In this paper, we study the existence and multiplicity of solutions with a prescribed L2-norm for a class of nonlinear fractional Choquard equations in RN:(-△)su-λu =(κα*|u|p)|u|p-2u,where N≥3,s∈(0,1),α∈(0,N),p∈(max{1 +(α+2s)/N,2},(N+α)/(N-2s)) and κα(x)=|x|α-N. To get such solutions,we look for critical points of the energy functional I(u) =1/2∫RN|(-△)s/2u|2-1/(2p)∫RN(κα*|u|p)|u|p on the constraints S(c)={u∈Hs(RN):‖u‖L2(RN)2=c},c >0.For the value p∈(max{1+(α+2s)/N,2},(N+α)/(N-2s)) considered, the functional I is unbounded from below on S(c). By using the constrained minimization method on a suitable submanifold of S(c), we prove that for any c>0, I has a critical point on S(c) with the least energy among all critical points of I restricted on S(c). After that,we describe a limiting behavior of the constrained critical point as c vanishes and tends to infinity. Moreover,by using a minimax procedure, we prove that for any c>0, there are infinitely many radial critical points of I restricted on S(c).展开更多
基金Natural Science Foundation of China(11771166)Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46.
文摘In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].
基金supported by National Natural Science Foundation of China (Grant Nos. 11371159 and 11771166)
文摘In this paper, we study the existence and multiplicity of solutions with a prescribed L2-norm for a class of nonlinear fractional Choquard equations in RN:(-△)su-λu =(κα*|u|p)|u|p-2u,where N≥3,s∈(0,1),α∈(0,N),p∈(max{1 +(α+2s)/N,2},(N+α)/(N-2s)) and κα(x)=|x|α-N. To get such solutions,we look for critical points of the energy functional I(u) =1/2∫RN|(-△)s/2u|2-1/(2p)∫RN(κα*|u|p)|u|p on the constraints S(c)={u∈Hs(RN):‖u‖L2(RN)2=c},c >0.For the value p∈(max{1+(α+2s)/N,2},(N+α)/(N-2s)) considered, the functional I is unbounded from below on S(c). By using the constrained minimization method on a suitable submanifold of S(c), we prove that for any c>0, I has a critical point on S(c) with the least energy among all critical points of I restricted on S(c). After that,we describe a limiting behavior of the constrained critical point as c vanishes and tends to infinity. Moreover,by using a minimax procedure, we prove that for any c>0, there are infinitely many radial critical points of I restricted on S(c).