The size effects on heat conduction and elastic deformation are becoming significant along with the miniaturization of the device and wide application of ultrafast lasers.In this work,to better describe the transient ...The size effects on heat conduction and elastic deformation are becoming significant along with the miniaturization of the device and wide application of ultrafast lasers.In this work,to better describe the transient responses of nanostructures,a size-dependent thermoelastic model is established based on nonlocal dual-phase-lag(N-DPL)heat conduction and Eringen's nonlocal elasticity,which is applied to the one-dimensional analysis of a finite bi-layered nanoscale plate under a sudden thermal shock.In the numerical part,a semi-analytical solution is obtained by using the Laplace transform method,upon which the effects of size-dependent characteristic lengths and material properties of each layer on the transient responses are discussed systematically.The results show that the introduction of the elastic nonlocal parameter of Medium 1 reduces the displacement and compressive stress,while the thermal nonlocal parameter of Medium 1 increases the deformation and compressive stress.These findings may be beneficial to the design of nano-sized and multi-layered devices.展开更多
Elasto-capillarity phenomena are prevalent in various industrial fields such as mechanical engineering,material science,aerospace,soft robotics,and biomedicine.In this study,two typical peeling processes of slender be...Elasto-capillarity phenomena are prevalent in various industrial fields such as mechanical engineering,material science,aerospace,soft robotics,and biomedicine.In this study,two typical peeling processes of slender beams driven by the parallel magnetic field are investigated based on experimental and theoretical analysis.The first is the adhesion of two parallel beams,and the second is the self-folding of a long beam.In these two cases,the energy variation method on the elastica is used,and then,the governing equations and transversality boundary conditions are derived.It is shown that the analytical solutions are in excellent agreement with the experimental data.The effects of magnetic induction intensity,distance,and surface tension on the deflection curve and peeling length of the elastica are fully discussed.The results are instrumental in accurately regulating elasto-capillarity in structures and provide insights for the engineering design of programmable microstructures on surfaces,microsensors,and bionic robots.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12002391 and11972375)the China Postdoctoral Science Foundation Funded Project(No.2019TQ0355)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA14010303)the Open Projects of State Key Laboratory for Strength and Vibration of Mechanical Structures(No.SV2020-KF-12)。
文摘The size effects on heat conduction and elastic deformation are becoming significant along with the miniaturization of the device and wide application of ultrafast lasers.In this work,to better describe the transient responses of nanostructures,a size-dependent thermoelastic model is established based on nonlocal dual-phase-lag(N-DPL)heat conduction and Eringen's nonlocal elasticity,which is applied to the one-dimensional analysis of a finite bi-layered nanoscale plate under a sudden thermal shock.In the numerical part,a semi-analytical solution is obtained by using the Laplace transform method,upon which the effects of size-dependent characteristic lengths and material properties of each layer on the transient responses are discussed systematically.The results show that the introduction of the elastic nonlocal parameter of Medium 1 reduces the displacement and compressive stress,while the thermal nonlocal parameter of Medium 1 increases the deformation and compressive stress.These findings may be beneficial to the design of nano-sized and multi-layered devices.
基金supported by the National Natural Science Foundation of China(12372027 and 12211530028)the Natural Science Foundation of Shandong Province(ZR202011050038)Special Funds for the Basic Scientific Research Expenses of Central Government Universities(2472022X03006A).
文摘Elasto-capillarity phenomena are prevalent in various industrial fields such as mechanical engineering,material science,aerospace,soft robotics,and biomedicine.In this study,two typical peeling processes of slender beams driven by the parallel magnetic field are investigated based on experimental and theoretical analysis.The first is the adhesion of two parallel beams,and the second is the self-folding of a long beam.In these two cases,the energy variation method on the elastica is used,and then,the governing equations and transversality boundary conditions are derived.It is shown that the analytical solutions are in excellent agreement with the experimental data.The effects of magnetic induction intensity,distance,and surface tension on the deflection curve and peeling length of the elastica are fully discussed.The results are instrumental in accurately regulating elasto-capillarity in structures and provide insights for the engineering design of programmable microstructures on surfaces,microsensors,and bionic robots.