InP shows a very high efficiency for solar light to electricity conversion in solar cell and may present an expectation property in photocatalytic hydrogen evolution.However,it suffers serious corrosion in water dispe...InP shows a very high efficiency for solar light to electricity conversion in solar cell and may present an expectation property in photocatalytic hydrogen evolution.However,it suffers serious corrosion in water dispersion.In this paper,it is demonstrated that the stability and activity of the InP-based catalyst are effectively enhanced by applying an anti-corrosion SnO layer and In(OH)_(3)transition layer,which reduces the crystal mismatch between SnO and InP and increases charge transfer.The obtained Pt/SnO/In(OH)_(3)/InP exhibits a hydrogen production rate of 144.42μmol/g in_(3)h under visible light illumination in multi-cycle tests without remarkable decay,12_(3)times higher than that of naked In(OH)_(3)/InP without any electron donor under visible irradiation.展开更多
文摘InP shows a very high efficiency for solar light to electricity conversion in solar cell and may present an expectation property in photocatalytic hydrogen evolution.However,it suffers serious corrosion in water dispersion.In this paper,it is demonstrated that the stability and activity of the InP-based catalyst are effectively enhanced by applying an anti-corrosion SnO layer and In(OH)_(3)transition layer,which reduces the crystal mismatch between SnO and InP and increases charge transfer.The obtained Pt/SnO/In(OH)_(3)/InP exhibits a hydrogen production rate of 144.42μmol/g in_(3)h under visible light illumination in multi-cycle tests without remarkable decay,12_(3)times higher than that of naked In(OH)_(3)/InP without any electron donor under visible irradiation.