The operator equation λMz^-X = XMzk, for k ≥ 2,λ∈ C, is completely solved. Further, some algebraic and spectral properties of the solutions of the equation are discussed.
An extension of slant Hankel operator,namely,the kth-orderλ-slant Hankel operator on the Lebesgue space L^(2)(T^(n)),where T is the unit circle and n≥1,a natural number,is described in terms of the solution of a sys...An extension of slant Hankel operator,namely,the kth-orderλ-slant Hankel operator on the Lebesgue space L^(2)(T^(n)),where T is the unit circle and n≥1,a natural number,is described in terms of the solution of a system of operator equations,which is subsequently expressed in terms of the product of a slant Hankel operator and a unitary operator.The study is further lifted in Calkin algebra in terms of essentially kth-orderλ-slant Hankel operators on L^(2)(T^(n)).展开更多
文摘The operator equation λMz^-X = XMzk, for k ≥ 2,λ∈ C, is completely solved. Further, some algebraic and spectral properties of the solutions of the equation are discussed.
文摘An extension of slant Hankel operator,namely,the kth-orderλ-slant Hankel operator on the Lebesgue space L^(2)(T^(n)),where T is the unit circle and n≥1,a natural number,is described in terms of the solution of a system of operator equations,which is subsequently expressed in terms of the product of a slant Hankel operator and a unitary operator.The study is further lifted in Calkin algebra in terms of essentially kth-orderλ-slant Hankel operators on L^(2)(T^(n)).