期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混合效应模型及EBLUP预测美国黄松林分优势木树高生长过程 被引量:14
1
作者 祖笑锋 倪成才 +1 位作者 gorden nigh 覃先林 《林业科学》 EI CAS CSCD 北大核心 2015年第3期25-33,共9页
【目的】基于加拿大哥伦比亚省美国黄松79株解析木数据,研究如何用经验线性无偏最优预测法(EBLUP)预测优势木树高生长过程,并分析预测精度与观测次数、观测间隔和预测时长的关系。【方法】随机抽取49株解析木数据拟合树高生长混合效应模... 【目的】基于加拿大哥伦比亚省美国黄松79株解析木数据,研究如何用经验线性无偏最优预测法(EBLUP)预测优势木树高生长过程,并分析预测精度与观测次数、观测间隔和预测时长的关系。【方法】随机抽取49株解析木数据拟合树高生长混合效应模型,30株解析木数据用于EBLUP的预测分析。树高生长模型以Richards,Logistic,Korf等为基础模型,选用AIC,BIC及Loglik 3个统计量评价模型的拟合效果。模型拟合用R软件的nlme函数实现,预测分析以预测误差均方(MSPE)为评价标准。在分析观测间隔、观测次数和预测时长对MSPE的影响时,为分离出1个因素的影响效果,将2个因素保持不变,以分析第3个因素的影响作用。在R软件拟合结果的基础上,用SAS的IML过程进行EBLUP预测分析。【结果】拟合结果表明,Logistic方程的拟合精度最高,选为EBLUP预测分析的基本模型。预测分析结果表明,观测次数、观测间隔和预测时长对预测精度均有显著影响。随着观测次数的增加,MSPE一般表现出减少的趋势,但下降幅度与观测间隔有关:当间隔较大时,不同的观测值可以提供更充分的生长过程信息,因而可以显著降低MSPE值;但当间隔较小时,观测值所提供的生长信息相互重叠,对提高预测精度的增益有限。从预测时长角度看,在观测值附近一定区域内,EBLUP预测结果非常精确,但随着预测时长增加,预测误差呈逐渐增加的趋势。【结论】EBLUP预测相当于两阶段拟合过程的第二阶段。第一阶段拟合为估计混合参数模型确定参数的过程,而第二阶段则是在第一阶段拟合结果的基础上,依据一个特定林分的若干树高观测值用EBLUP法预测此林分的随机效应值,并进一步预测树高生长过程。 展开更多
关键词 混合效应模型 经验线性无偏最优预测法 树高生长模型 美国黄松
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部