Stroke is a leading cause of death and disability and new therapies are desperately needed. Given the complex nature of ischemic brain injury, it has been postulated that cell-based therapies may be useful. However, c...Stroke is a leading cause of death and disability and new therapies are desperately needed. Given the complex nature of ischemic brain injury, it has been postulated that cell-based therapies may be useful. However, cell resources, invasive extraction procedures, immunological rejection, tumorigenesis and ethical challenges make it unlikely that many stem cell types could serve as a practical source for therapy. By contrast, these issues do not pertain to human amnion epithelial cells(h AECs), which are placenta-derived stem cells. We recently assessed the effects of systemically delivered hAECs on stroke outcome using four animal models of stroke. We demonstrated that when injected intravenously after ischemia onset, hAECs migrate preferentially to the spleen and injured brain to limit apoptosis and inflammation, and attenuate early brain infiltration of immune cells, progression of infarction and systemic immunosuppression and to ultimately ameliorate functional deficits. When administration of hAECs is delayed by 1-3 days poststroke, long-term functional recovery can still be enhanced in young and aged mice of either sex. Moreover, our proof-of-principle findings suggest that h AECs are effective at limiting post-stroke infarct development in non-human primates. Overall, the results suggest that hAECs could be a viable clinical stroke therapy.展开更多
The mineralocorticoid receptor(MR),well known to be expressed in renal epithelial cells where it is important in fluid and electrolyte homeostasis,has aldosterone as one of its main agonists.Much research in the las...The mineralocorticoid receptor(MR),well known to be expressed in renal epithelial cells where it is important in fluid and electrolyte homeostasis,has aldosterone as one of its main agonists.Much research in the last 10–15 years indicates that MRs are also expressed outside of the kidney,including in the brain,vasculature and heart,where they contribute to the pathophysiology of disease(Dinh et al.,2012;]aisser and Farman, 2016).展开更多
文摘Stroke is a leading cause of death and disability and new therapies are desperately needed. Given the complex nature of ischemic brain injury, it has been postulated that cell-based therapies may be useful. However, cell resources, invasive extraction procedures, immunological rejection, tumorigenesis and ethical challenges make it unlikely that many stem cell types could serve as a practical source for therapy. By contrast, these issues do not pertain to human amnion epithelial cells(h AECs), which are placenta-derived stem cells. We recently assessed the effects of systemically delivered hAECs on stroke outcome using four animal models of stroke. We demonstrated that when injected intravenously after ischemia onset, hAECs migrate preferentially to the spleen and injured brain to limit apoptosis and inflammation, and attenuate early brain infiltration of immune cells, progression of infarction and systemic immunosuppression and to ultimately ameliorate functional deficits. When administration of hAECs is delayed by 1-3 days poststroke, long-term functional recovery can still be enhanced in young and aged mice of either sex. Moreover, our proof-of-principle findings suggest that h AECs are effective at limiting post-stroke infarct development in non-human primates. Overall, the results suggest that hAECs could be a viable clinical stroke therapy.
基金supported by a postdoctoral fellowship from the National Health and Medical Research Council (NHMRC) of Australiathe Foundation for High Blood Pressure Research Australia (to SC)grants from the NHMRC and the National Heart Foundation of Australia
文摘The mineralocorticoid receptor(MR),well known to be expressed in renal epithelial cells where it is important in fluid and electrolyte homeostasis,has aldosterone as one of its main agonists.Much research in the last 10–15 years indicates that MRs are also expressed outside of the kidney,including in the brain,vasculature and heart,where they contribute to the pathophysiology of disease(Dinh et al.,2012;]aisser and Farman, 2016).