In the present work it is studied the phosphorus-aluminum co-doping effect on the electronic and structural graphene properties using ab initio calculations in the framework of DFT (density functional theory). The d...In the present work it is studied the phosphorus-aluminum co-doping effect on the electronic and structural graphene properties using ab initio calculations in the framework of DFT (density functional theory). The doping of graphene with substituent heteroatoms can modify the band structures as well as the electron transfer, improving the electronic performance that could enhance the sensing ability in gas sensor devices. The incorporation of heteroatoms in the graphene monolayer alters the unit cell. The alteration degree depends on the dopant concentration. Furthermore, the electronic properties were modified by opening the gap up to 0.61 eV produced by the combination of phosphorus and aluminum as dopants. The dopant concentration can be controlled, which causes different degrees of semiconductor behavior on the co-doped graphene.展开更多
文摘In the present work it is studied the phosphorus-aluminum co-doping effect on the electronic and structural graphene properties using ab initio calculations in the framework of DFT (density functional theory). The doping of graphene with substituent heteroatoms can modify the band structures as well as the electron transfer, improving the electronic performance that could enhance the sensing ability in gas sensor devices. The incorporation of heteroatoms in the graphene monolayer alters the unit cell. The alteration degree depends on the dopant concentration. Furthermore, the electronic properties were modified by opening the gap up to 0.61 eV produced by the combination of phosphorus and aluminum as dopants. The dopant concentration can be controlled, which causes different degrees of semiconductor behavior on the co-doped graphene.