Complex survey designs often involve unequal selection probabilities of clus-ters or units within clusters. When estimating models for complex survey data, scaled weights are incorporated into the likelihood, producin...Complex survey designs often involve unequal selection probabilities of clus-ters or units within clusters. When estimating models for complex survey data, scaled weights are incorporated into the likelihood, producing a pseudo likeli-hood. In a 3-level weighted analysis for a binary outcome, we implemented two methods for scaling the sampling weights in the National Health Survey of Pa-kistan (NHSP). For NHSP with health care utilization as a binary outcome we found age, gender, household (HH) goods, urban/rural status, community de-velopment index, province and marital status as significant predictors of health care utilization (p-value < 0.05). The variance of the random intercepts using scaling method 1 is estimated as 0.0961 (standard error 0.0339) for PSU level, and 0.2726 (standard error 0.0995) for household level respectively. Both esti-mates are significantly different from zero (p-value < 0.05) and indicate consid-erable heterogeneity in health care utilization with respect to households and PSUs. The results of the NHSP data analysis showed that all three analyses, weighted (two scaling methods) and un-weighted, converged to almost identical results with few exceptions. This may have occurred because of the large num-ber of 3rd and 2nd level clusters and relatively small ICC. We performed a sim-ulation study to assess the effect of varying prevalence and intra-class correla-tion coefficients (ICCs) on bias of fixed effect parameters and variance components of a multilevel pseudo maximum likelihood (weighted) analysis. The simulation results showed that the performance of the scaled weighted estimators is satisfactory for both scaling methods. Incorporating simulation into the analysis of complex multilevel surveys allows the integrity of the results to be tested and is recommended as good practice.展开更多
文摘Complex survey designs often involve unequal selection probabilities of clus-ters or units within clusters. When estimating models for complex survey data, scaled weights are incorporated into the likelihood, producing a pseudo likeli-hood. In a 3-level weighted analysis for a binary outcome, we implemented two methods for scaling the sampling weights in the National Health Survey of Pa-kistan (NHSP). For NHSP with health care utilization as a binary outcome we found age, gender, household (HH) goods, urban/rural status, community de-velopment index, province and marital status as significant predictors of health care utilization (p-value < 0.05). The variance of the random intercepts using scaling method 1 is estimated as 0.0961 (standard error 0.0339) for PSU level, and 0.2726 (standard error 0.0995) for household level respectively. Both esti-mates are significantly different from zero (p-value < 0.05) and indicate consid-erable heterogeneity in health care utilization with respect to households and PSUs. The results of the NHSP data analysis showed that all three analyses, weighted (two scaling methods) and un-weighted, converged to almost identical results with few exceptions. This may have occurred because of the large num-ber of 3rd and 2nd level clusters and relatively small ICC. We performed a sim-ulation study to assess the effect of varying prevalence and intra-class correla-tion coefficients (ICCs) on bias of fixed effect parameters and variance components of a multilevel pseudo maximum likelihood (weighted) analysis. The simulation results showed that the performance of the scaled weighted estimators is satisfactory for both scaling methods. Incorporating simulation into the analysis of complex multilevel surveys allows the integrity of the results to be tested and is recommended as good practice.