Diffractive lenses(DLs)can realize high-resolution imaging with light weight and compact size.Conventional DLs suffer large chromatic and off-axis aberrations,which significantly limits their practical applications.Al...Diffractive lenses(DLs)can realize high-resolution imaging with light weight and compact size.Conventional DLs suffer large chromatic and off-axis aberrations,which significantly limits their practical applications.Although many achromatic methods have been proposed,most of them are used for designing small aperture DLs,which have low diffraction efficiencies.In the designing of diffractive achromatic lenses,increasing the aperture and improving the diffraction efficiency have become two of the most important design issues.Here,a novel phase-coded diffractive lens(PCDL)for achromatic imaging with a large aperture and high efficiency is proposed and demonstrated experimentally,and it also possesses wide field-of-view(FOV)imaging at the same time.The phase distribution of the conventional phase-type diffractive lens(DL)is coded with a cubic function to expand both the working bandwidth and the FOV of conventional DL.The proposed phase-type DL is fabricated by using the laser direct writing of grey-scale patterns for a PCDL of a diameter of 10 mm,a focal length of 100 mm,and a cubic phase coding parameter of 30π.Experimental results show that the working bandwidth and the FOV of the PCDL respectively reach 50 nm and 16°with over 8%focusing efficiency,which are in significant contrast to the counterparts of conventional DL and in good agreement with the theoretical predictions.This work provides a novel way for implementing the achromatic,wide FOV,and high-efficiency imaging with large aperture DL.展开更多
基金the National Natural Science Foundation of China(Grant No.61775154)the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(Grant No.18KJB140015)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Open Research Fund of CAS Key Laboratory of Space Precision Measurement Technology,China(Grant No.SPMT2021001)。
文摘Diffractive lenses(DLs)can realize high-resolution imaging with light weight and compact size.Conventional DLs suffer large chromatic and off-axis aberrations,which significantly limits their practical applications.Although many achromatic methods have been proposed,most of them are used for designing small aperture DLs,which have low diffraction efficiencies.In the designing of diffractive achromatic lenses,increasing the aperture and improving the diffraction efficiency have become two of the most important design issues.Here,a novel phase-coded diffractive lens(PCDL)for achromatic imaging with a large aperture and high efficiency is proposed and demonstrated experimentally,and it also possesses wide field-of-view(FOV)imaging at the same time.The phase distribution of the conventional phase-type diffractive lens(DL)is coded with a cubic function to expand both the working bandwidth and the FOV of conventional DL.The proposed phase-type DL is fabricated by using the laser direct writing of grey-scale patterns for a PCDL of a diameter of 10 mm,a focal length of 100 mm,and a cubic phase coding parameter of 30π.Experimental results show that the working bandwidth and the FOV of the PCDL respectively reach 50 nm and 16°with over 8%focusing efficiency,which are in significant contrast to the counterparts of conventional DL and in good agreement with the theoretical predictions.This work provides a novel way for implementing the achromatic,wide FOV,and high-efficiency imaging with large aperture DL.