Background Cardiovascular complications of Kawasaki disease (KD) are a common cause of heart disease in pediatric populations.Previous studies have suggested a role for endothelial progenitor cells (EPCs) in coron...Background Cardiovascular complications of Kawasaki disease (KD) are a common cause of heart disease in pediatric populations.Previous studies have suggested a role for endothelial progenitor cells (EPCs) in coronary artery lesions associated with KD.However,long-term observations of EPCs during the natural progression of this disorder are lacking.Using an experimental model of KD,we aimed to determine whether the coronary artery lesions are associated with down-regulation of EPCs.Methods To induce KD,C57BL/6 mice were administered an intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE; phosphate buffered saline used as control vehicle).Study groups included:group A (14 days following LCWE injection),group B (56 days following LCWE injection) and group C (controls).Numbers of circulating EPCs (positively staining for both CD34 and FIk-1 while staining negative for CD45) were evaluated using flow cytometry.Bone marrow mononuclear cells were cultured in vitro to expand EPCs for functional analysis.In vitro EPC proliferation,adhesion and migration were assessed.Results The model was shown to exhibit similar coronary artery lesions to KD patients with coronary aneurysms.Numbers of circulating EPCs decreased significantly in the KD models (groups A and B) compared to controls ((0.017±0.008)% VS.(0.028±0.007)%,P〈0.05 and (0.016±0.007)% vs.(0.028±0.007)%,P 〈0.05).Proliferative,adhesive and migratory properties of EPCs were markedly impaired in groups A and B.Conclusion Coronary artery lesions in KD occur as a consequence of impaired vascular injury repair,resulting from excess consumption of EPCs together with a functional impairment of bone marrow EPCs and their precursors.展开更多
Background Coronary artery damage from Kawasaki disease (KD) is closely linked to the dysfunction of endothelial progenitor cells (EPCs). The aim of the present study was to evaluate the therapeutic effect of EPCs...Background Coronary artery damage from Kawasaki disease (KD) is closely linked to the dysfunction of endothelial progenitor cells (EPCs). The aim of the present study was to evaluate the therapeutic effect of EPCs transplantation in KD model. Methods Lactobacillus casei cell wall extract (LCWE)-induced KD model in C57BL/6 mice was established. The model mice were injected intravenously with bone marrow-derived in vitro expanded EPCs. Histological evaluation, number of circulating EPCs and the function of bone marrow EPCs were examined at day 56. Results Inflammation was found around the coronary artery of the model mice after 14 days, Elastin breakdown was observed after 56 days. CM-Dil labeled EPCs incorporated into vessel repairing foci was found. At day 56, the number of peripheral EPCs in the KD model group was lower than in EPCs transplanted and control group. The functional index of bone marrow EPCs from the KD model group decreased in proliferation, adhesion and migration. Increased number of circulating EPCs and improved function were observed on the EPCs transplanted group compared with model group. Conclusion Exogenously administered EPCs, which represent a novel strategy could prevent the dysfunction of EPCs, accelerate the repair of coronary artery endothelium lesion and decrease the occurrence of aneurysm.展开更多
Background::Regulated upon activation, normal T-cell expressed, and secreted (RANTES) is a chemokine actively involved in the initiation and progression of atherosclerosis (AS), which is the major cause of ischemic ce...Background::Regulated upon activation, normal T-cell expressed, and secreted (RANTES) is a chemokine actively involved in the initiation and progression of atherosclerosis (AS), which is the major cause of ischemic cerebrovascular disease (ICVD). This study aimed to determine the associations between circulating RANTES level and overall AS conditions of cardiac and cerebral vessel beds in patients with ICVD.Methods::Patients with ICVD admitted to the department of neurology of Xuanwu Hospital from April 1, 2019 to June 30, 2019 were prospectively enrolled in the study. Plasma RANTES level was measured by enzyme-linked immunosorbent assay to represent the circulating RANTES level. The integrated AS burden of the cervicocephalic and coronary arteries was examined using computed tomography angiography and reflected by "cardio-cerebral AS burden (CCAB)" as a continuous variable. Then, the relationship of plasma RANTES level and CCAB in patients with ICVD was analyzed by correlation analyses and general linear models.Results::A total of 40 patients with ICVD were included in the study. There was a significant positive correlation between CCAB and plasma RANTES level in ICVD ( r = 0.786, P < 0.001), independent of age, sex, acute or chronic phase of ICVD, and mono or dual antiplatelet therapy (adjusted B for ln RANTES, 12.063;95% confidence interval, 7.572-16.533). The association of plasma RANTES level with AS conditions (burden, severity, and extent) in single cardiac or cerebral vessel bed was similar to that with CCAB, but the correlation coefficient for CCAB was higher (increment ranged from 0.126 to 0.397). Conclusions::Plasma RANTES level was an independent indicator for the integrated AS burden of the cervicocephalic and coronary arteries in ICVD. Comprehensive evaluation of AS conditions using the novel continuous index CCAB might be important in revealing the systematic relationship between circulating RANTES and AS in patients with ICVD.展开更多
基金This study was supported by the grants from National Natural Science Foundation of China(No.30973238),Beijing Natural Science Foundation (No.7092032),Key Research Project of Beijing Natural Science Foundation (B)/Beijing Education Committee (No.KZ201010025024) and Beijing "215" Medical Professional Project (No.2009-3-38).
文摘Background Cardiovascular complications of Kawasaki disease (KD) are a common cause of heart disease in pediatric populations.Previous studies have suggested a role for endothelial progenitor cells (EPCs) in coronary artery lesions associated with KD.However,long-term observations of EPCs during the natural progression of this disorder are lacking.Using an experimental model of KD,we aimed to determine whether the coronary artery lesions are associated with down-regulation of EPCs.Methods To induce KD,C57BL/6 mice were administered an intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE; phosphate buffered saline used as control vehicle).Study groups included:group A (14 days following LCWE injection),group B (56 days following LCWE injection) and group C (controls).Numbers of circulating EPCs (positively staining for both CD34 and FIk-1 while staining negative for CD45) were evaluated using flow cytometry.Bone marrow mononuclear cells were cultured in vitro to expand EPCs for functional analysis.In vitro EPC proliferation,adhesion and migration were assessed.Results The model was shown to exhibit similar coronary artery lesions to KD patients with coronary aneurysms.Numbers of circulating EPCs decreased significantly in the KD models (groups A and B) compared to controls ((0.017±0.008)% VS.(0.028±0.007)%,P〈0.05 and (0.016±0.007)% vs.(0.028±0.007)%,P 〈0.05).Proliferative,adhesive and migratory properties of EPCs were markedly impaired in groups A and B.Conclusion Coronary artery lesions in KD occur as a consequence of impaired vascular injury repair,resulting from excess consumption of EPCs together with a functional impairment of bone marrow EPCs and their precursors.
基金This study was supported by the grants from National Natural Science Foundation of China (No. 30973238), Beijing Natural Science Foundation (No.7092032), Key Research Project of Beijing Natural Science Foundation (B)/Beijing Education Committee (No. KZ201010025024) and Beijing "215" Medical Professional Project Fund (No. 2009-3-38).
文摘Background Coronary artery damage from Kawasaki disease (KD) is closely linked to the dysfunction of endothelial progenitor cells (EPCs). The aim of the present study was to evaluate the therapeutic effect of EPCs transplantation in KD model. Methods Lactobacillus casei cell wall extract (LCWE)-induced KD model in C57BL/6 mice was established. The model mice were injected intravenously with bone marrow-derived in vitro expanded EPCs. Histological evaluation, number of circulating EPCs and the function of bone marrow EPCs were examined at day 56. Results Inflammation was found around the coronary artery of the model mice after 14 days, Elastin breakdown was observed after 56 days. CM-Dil labeled EPCs incorporated into vessel repairing foci was found. At day 56, the number of peripheral EPCs in the KD model group was lower than in EPCs transplanted and control group. The functional index of bone marrow EPCs from the KD model group decreased in proliferation, adhesion and migration. Increased number of circulating EPCs and improved function were observed on the EPCs transplanted group compared with model group. Conclusion Exogenously administered EPCs, which represent a novel strategy could prevent the dysfunction of EPCs, accelerate the repair of coronary artery endothelium lesion and decrease the occurrence of aneurysm.
基金supported by grants from the Beijing Municipal Natural Science Foundation(No.7172093)Beijing Municipal Administration of Hospitals Clinical Medicine Development(No.ZYLX201706)Clinical Center for Cardio-cerebrovascular Disease,Capital Medical University,Beijing,China.
文摘Background::Regulated upon activation, normal T-cell expressed, and secreted (RANTES) is a chemokine actively involved in the initiation and progression of atherosclerosis (AS), which is the major cause of ischemic cerebrovascular disease (ICVD). This study aimed to determine the associations between circulating RANTES level and overall AS conditions of cardiac and cerebral vessel beds in patients with ICVD.Methods::Patients with ICVD admitted to the department of neurology of Xuanwu Hospital from April 1, 2019 to June 30, 2019 were prospectively enrolled in the study. Plasma RANTES level was measured by enzyme-linked immunosorbent assay to represent the circulating RANTES level. The integrated AS burden of the cervicocephalic and coronary arteries was examined using computed tomography angiography and reflected by "cardio-cerebral AS burden (CCAB)" as a continuous variable. Then, the relationship of plasma RANTES level and CCAB in patients with ICVD was analyzed by correlation analyses and general linear models.Results::A total of 40 patients with ICVD were included in the study. There was a significant positive correlation between CCAB and plasma RANTES level in ICVD ( r = 0.786, P < 0.001), independent of age, sex, acute or chronic phase of ICVD, and mono or dual antiplatelet therapy (adjusted B for ln RANTES, 12.063;95% confidence interval, 7.572-16.533). The association of plasma RANTES level with AS conditions (burden, severity, and extent) in single cardiac or cerebral vessel bed was similar to that with CCAB, but the correlation coefficient for CCAB was higher (increment ranged from 0.126 to 0.397). Conclusions::Plasma RANTES level was an independent indicator for the integrated AS burden of the cervicocephalic and coronary arteries in ICVD. Comprehensive evaluation of AS conditions using the novel continuous index CCAB might be important in revealing the systematic relationship between circulating RANTES and AS in patients with ICVD.