Photothermal ethanol steam reforming(ESR) is currently limited by low intrinsic activity and strong solar energy dissipation.Herein,we synthesized Fe single atoms supported on CeO_(2)(SA Fe-CeO_(2)) to exhibit excelle...Photothermal ethanol steam reforming(ESR) is currently limited by low intrinsic activity and strong solar energy dissipation.Herein,we synthesized Fe single atoms supported on CeO_(2)(SA Fe-CeO_(2)) to exhibit excellent low-temperature ESR activity with a hydrogen production rate of 512 mmol g^(-1)h^(-1) at 350℃,becuase of the high oxidation state of Fe single atoms to weaken the reaction barrier of ethanol decomposition.Furthermore,a heterostructure of SA Fe-CeO_(2) and Ti foil could eliminate 66% of infrared radiation via the size effect,thus achieving a 3.5 sun-driven temperature of 347℃.Consequently,the heterostructure of SA Fe-CeO_(2) and Ti foil shows a hydrogen generation rate of 984 mmol g^(-1)h^(-1) of ESR and 11.31% of solar-to-hydrogen energy conversion efficiency,which outperforms other photothermal ethanol-hydrogen production systems.This study provides a new path for designing active catalytic sites and trapping light energy of photothermal catalysts.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52371220)Natural Science Foundation of Hebei Province(Grant Nos.B2023204034,B2023201107,B2022201090,B2021201074,B2021201034,F2021203097)+5 种基金Hebei Provincial Department of Science and Technology(Grant No.216Z4303G)Hebei Education Department(Grant No,QN2022059)Interdisciplinary Research Program of Natural Science of Hebei University(Grant Nos.521100311,DXK202109)the Advanced Talents Incubation Program of Hebei University(Grant Nos.521100223213,521000981248,521000981377 and 8012605)Hebei University(050001-521100302025,050001-513300201004)the Scientific Research Foundation of Hebei Agricultural University(YJ201939)。
文摘Photothermal ethanol steam reforming(ESR) is currently limited by low intrinsic activity and strong solar energy dissipation.Herein,we synthesized Fe single atoms supported on CeO_(2)(SA Fe-CeO_(2)) to exhibit excellent low-temperature ESR activity with a hydrogen production rate of 512 mmol g^(-1)h^(-1) at 350℃,becuase of the high oxidation state of Fe single atoms to weaken the reaction barrier of ethanol decomposition.Furthermore,a heterostructure of SA Fe-CeO_(2) and Ti foil could eliminate 66% of infrared radiation via the size effect,thus achieving a 3.5 sun-driven temperature of 347℃.Consequently,the heterostructure of SA Fe-CeO_(2) and Ti foil shows a hydrogen generation rate of 984 mmol g^(-1)h^(-1) of ESR and 11.31% of solar-to-hydrogen energy conversion efficiency,which outperforms other photothermal ethanol-hydrogen production systems.This study provides a new path for designing active catalytic sites and trapping light energy of photothermal catalysts.